
Artificial Intelligence
Comprehensive Course Notes

Gabriel Rovesti

May 3, 2025

2

Contents

1 Introduction to Artificial Intelligence 11
1.1 Historical Overview . 11

1.1.1 Early Successes . 11
1.1.2 Expert Systems Era (1970s-1980s) 11
1.1.3 Neural Networks Development 12
1.1.4 Deep Learning Revolution 12

1.2 AI Agent Architecture . 12
1.2.1 Definition of Intelligent Agents 12
1.2.2 PEAS Framework . 13
1.2.3 Environment Types 13
1.2.4 Agent Types . 13

1.3 Environment Representations 16

2 Problem Solving and Search 17
2.1 Problem Formulation . 17
2.2 Uninformed Search Strategies 17

2.2.1 Breadth-First Search (BFS) 17
2.2.2 Uniform-Cost Search 18
2.2.3 Depth-First Search (DFS) 18
2.2.4 Iterative Deepening Search (IDS) 18
2.2.5 Bidirectional Search 19

2.3 Informed Search Strategies . 19
2.3.1 Best-First Search . 19
2.3.2 Greedy Search . 19
2.3.3 A* Search . 20
2.3.4 Consistency in Heuristics 20
2.3.5 Memory-Bounded Search Algorithms 20
2.3.6 Heuristic Functions . 21

2.4 Local Search Algorithms . 21
2.4.1 Hill Climbing . 22
2.4.2 Simulated Annealing 22
2.4.3 Local Beam Search . 22
2.4.4 Genetic Algorithms . 22

3

4 CONTENTS

2.5 Online Search . 23
2.5.1 Online Search Characteristics 23
2.5.2 Online Search Algorithms 23

3 Adversarial Search 25
3.1 Game Theory Basics . 25

3.1.1 Game Types . 25
3.1.2 Game Representation 25

3.2 Minimax Algorithm . 26
3.2.1 Minimax Properties 26

3.3 Alpha-Beta Pruning . 26
3.3.1 Alpha-Beta Properties 27

3.4 Resource Limits and Evaluation Functions 28
3.4.1 Evaluation Functions 28
3.4.2 Cutoff Test . 28
3.4.3 Horizon Effect . 28

3.5 Games with Chance . 28
3.5.1 Expectiminimax . 28
3.5.2 Expectiminimax Properties 28

3.6 Partially Observable Games 29
3.6.1 Information Sets . 29
3.6.2 Strategies for Partially Observable Games 29

4 Knowledge Representation: Propositional Logic 31
4.1 Knowledge-Based Agents . 31

4.1.1 Architecture . 31
4.2 Propositional Logic . 31

4.2.1 Syntax . 31
4.2.2 Semantics . 32
4.2.3 Entailment . 32

4.3 Inference Algorithms . 32
4.3.1 Inference by Enumeration 32
4.3.2 Forward Chaining . 32
4.3.3 Backward Chaining . 33
4.3.4 Resolution . 33

5 First-Order Logic 37
5.1 Limitations of Propositional Logic 37
5.2 First-Order Logic Syntax . 37

5.2.1 Basic Elements . 37
5.2.2 Terms and Sentences 37

5.3 First-Order Logic Semantics 38
5.3.1 Models . 38
5.3.2 Quantifiers . 38

CONTENTS 5

5.4 Inference in First-Order Logic 38
5.4.1 Universal Instantiation (UI) 38
5.4.2 Existential Instantiation (EI) 39
5.4.3 Unification . 39
5.4.4 Generalized Modus Ponens (GMP) 39
5.4.5 Forward Chaining for FOL 39
5.4.6 Backward Chaining for FOL 40
5.4.7 Resolution for FOL . 40

6 Uncertainty and Probabilistic Reasoning 43
6.1 Motivation . 43
6.2 Probability Theory Basics . 43

6.2.1 Probability Model . 43
6.2.2 Axioms of Probability 43
6.2.3 Conditional Probability 44

6.3 Inference Using Full Joint Distributions 44
6.4 Independence . 44
6.5 Conditional Independence . 44
6.6 Bayes’ Rule . 45
6.7 Naive Bayes Models . 45
6.8 Bayesian Networks . 45

6.8.1 Structure . 45
6.8.2 Example Bayesian Network 45
6.8.3 Advantages of Bayesian Networks 45

6.9 Inference in Bayesian Networks 46
6.9.1 Exact Inference . 46
6.9.2 Approximate Inference 46

7 Machine Learning 49
7.1 Introduction to Machine Learning 49

7.1.1 When to Use Machine Learning 49
7.1.2 Components of Learning 49

7.2 Learning Paradigms . 49
7.2.1 Supervised Learning 49
7.2.2 Unsupervised Learning 50
7.2.3 Reinforcement Learning 50

7.3 Hypothesis Space and Learning Algorithms 50
7.3.1 Hypothesis Space . 50
7.3.2 Empirical Risk Minimization 50

7.4 Model Complexity and Generalization 50
7.4.1 Overfitting and Underfitting 50
7.4.2 VC Dimension . 51
7.4.3 Confidence Intervals and Generalization 51
7.4.4 Structural Risk Minimization 51

6 CONTENTS

7.5 Machine Learning in Practice 51
7.5.1 Dataset Splitting . 51
7.5.2 Model Selection . 51
7.5.3 Data Preprocessing . 52

7.6 Neural Networks and Deep Learning 52
7.6.1 Artificial Neuron . 52
7.6.2 Feedforward Neural Networks 52
7.6.3 Backpropagation Algorithm 52
7.6.4 Deep Learning . 53
7.6.5 Convolutional Neural Networks (CNNs) 53
7.6.6 Transformers . 53

8 Reinforcement Learning 55
8.1 Introduction to Reinforcement Learning 55
8.2 Markov Decision Processes (MDPs) 55

8.2.1 MDP Formulation . 55
8.2.2 The Goal in MDPs . 56

8.3 Value Functions . 56
8.3.1 State-Value Function 56
8.3.2 Action-Value Function (Q-Function) 56
8.3.3 Bellman Equations . 56
8.3.4 Optimal Value Functions 56
8.3.5 Optimal Policy . 56

8.4 Dynamic Programming Methods 57
8.4.1 Policy Evaluation . 57
8.4.2 Policy Improvement 57
8.4.3 Policy Iteration . 57
8.4.4 Value Iteration . 57

8.5 Model-Free Learning . 57
8.5.1 Monte Carlo Learning 57
8.5.2 Temporal Difference Learning 57

8.6 Q-Learning . 58
8.6.1 Q-Learning Algorithm 58
8.6.2 Exploration vs. Exploitation 58

8.7 Function Approximation . 59
8.7.1 Linear Function Approximation 59
8.7.2 Deep Q-Networks (DQN) 59

8.8 Policy Gradient Methods . 59
8.8.1 Policy Parameterization 59
8.8.2 Policy Gradient Theorem 59
8.8.3 REINFORCE Algorithm 60

8.9 Advanced Topics . 60
8.9.1 Deep Reinforcement Learning 60
8.9.2 Multi-Agent Reinforcement Learning 60

CONTENTS 7

8.9.3 Hierarchical Reinforcement Learning 60

9 Natural Language Processing 61
9.1 Introduction to NLP . 61

9.1.1 Applications of NLP 61
9.2 Language Models . 61

9.2.1 N-gram Models . 61
9.2.2 Smoothing . 62
9.2.3 Evaluation: Perplexity 62

9.3 Text Classification . 62
9.3.1 Naive Bayes Classifier 62
9.3.2 Bag-of-Words Model 62

9.4 Word Embeddings . 63
9.4.1 Distributional Semantics 63
9.4.2 Word2Vec . 63
9.4.3 GloVe (Global Vectors) 63

9.5 Parts of Speech and Syntax 63
9.5.1 Parts of Speech (POS) 63
9.5.2 POS Tagging . 63
9.5.3 Syntactic Parsing . 64

9.6 Modern NLP with Deep Learning 64
9.6.1 Subword Models . 64
9.6.2 Transformer Architecture 64
9.6.3 Pre-trained Language Models 65

9.7 Evaluating NLP Systems . 66
9.7.1 Intrinsic Evaluation 66
9.7.2 Extrinsic Evaluation 66

10 Computer Vision 67
10.1 Introduction to Computer Vision 67

10.1.1 Why Computer Vision is Useful 67
10.2 Challenges in Computer Vision 67

10.2.1 Variability in Appearance 68
10.2.2 Semantic Gap . 68
10.2.3 Computational Challenges 68

10.3 Image Formation and Representation 68
10.3.1 Image Formation Process 68
10.3.2 Digital Image Representation 69

10.4 Traditional Computer Vision Approaches 69
10.4.1 Filtering and Convolution 69
10.4.2 Edge Detection . 70
10.4.3 Feature Extraction . 70

10.5 Traditional Object Recognition Paradigms 71
10.5.1 Bag of Visual Words 71

8 CONTENTS

10.5.2 Part-Based Models . 72
10.5.3 Template Matching . 73

10.6 Deep Learning Approaches . 73
10.6.1 Convolutional Neural Networks (CNNs) 73
10.6.2 Popular CNN Architectures 74
10.6.3 Tasks in Computer Vision 74

10.7 Vision Transformers . 74
10.7.1 From CNNs to Transformers 74
10.7.2 Vision Transformer (ViT) Architecture 75
10.7.3 Recent Developments 75

10.8 Evaluation Metrics in Computer Vision 76
10.8.1 Classification Metrics 76
10.8.2 Detection and Segmentation Metrics 76

10.9 Challenges and Future Directions 76
10.9.1 Current Challenges . 76
10.9.2 Future Directions . 77

10.10Applications of Computer Vision 77
10.10.1Healthcare . 77
10.10.2Autonomous Systems 77
10.10.3Security and Surveillance 78
10.10.4Augmented and Virtual Reality 78
10.10.5Retail and E-commerce 78

10.11Conclusion . 78

11 Constraint Satisfaction Problems 81
11.1 Introduction to CSPs . 81

11.1.1 Definition . 81
11.1.2 Examples of CSPs . 81
11.1.3 Types of Constraints 82
11.1.4 Constraint Graphs . 82

11.2 Backtracking Search for CSPs 82
11.2.1 Basic Backtracking Algorithm 82
11.2.2 Improving Backtracking Efficiency 83
11.2.3 Constraint Propagation 84

11.3 Problem Structure and Decomposition 84
11.3.1 Tree-Structured CSPs 84
11.3.2 Nearly Tree-Structured CSPs 85

11.4 Local Search for CSPs . 85
11.4.1 Min-Conflicts Algorithm 85
11.4.2 Applications to N-Queens 86
11.4.3 Local Search for Optimization Problems 86

CONTENTS 9

12 Multimodal Large Language Models 89
12.1 Introduction to Multimodal Learning 89

12.1.1 From Unimodal to Multimodal AI 89
12.1.2 Challenges in Multimodal Learning 89
12.1.3 Multimodal Applications 90

12.2 Building Blocks of Multimodal Models 90
12.2.1 CLIP: Contrastive Language-Image Pre-training . . . 90
12.2.2 Diffusion Models . 90
12.2.3 One for All (OFA) . 91

12.3 Efficient Multimodal Models 91
12.3.1 BLIP-2: Bootstrapping Language-Image Pre-training . 91
12.3.2 Training Objectives in BLIP-2 92
12.3.3 Efficiency Comparisons 92

12.4 MLLM Architectures . 92
12.4.1 Architectural Paradigms 92
12.4.2 LLM as Discrete Controller 93
12.4.3 LLM as Joint Part of System 94

12.5 Image Tokenization and Processing 94
12.5.1 Methods for Image Tokenization 94
12.5.2 Challenges in Image Tokenization 95
12.5.3 Tokenization in Leading MLLMs 95

12.6 Multimodal Instruction Tuning 96
12.6.1 From Pre-training to Instruction Tuning 96
12.6.2 Creating Multimodal Instruction Datasets 96
12.6.3 LLaVA: Large Language and Vision Assistant 96

12.7 Future Directions and Challenges 97
12.7.1 Expanding Modalities 97
12.7.2 Key Challenges . 97
12.7.3 Applications and Impact 98

10 CONTENTS

Chapter 1

Introduction to Artificial
Intelligence

1.1 Historical Overview

Artificial Intelligence emerged as a formal discipline in 1956 during a work-
shop at Dartmouth College, attended by pioneers such as John McCarthy,
Marvin Minsky, and Claude Shannon. The field initially focused on general
principles of intelligence and problem-solving.

1.1.1 Early Successes

Early achievements in AI included:

• Samuel’s Checkers program (1952): Learned weights and played at a
strong amateur level

• Logic Theorist (1955): Developed by Newell & Simon to prove theo-
rems in Principia Mathematica using search and heuristics

• General Problem Solver (GPS): A more general approach to problem-
solving

1.1.2 Expert Systems Era (1970s-1980s)

Expert systems represented a significant paradigm in AI development:

• Systems designed to elicit domain-specific knowledge from experts in
the form of rules

• DENDRAL: Inferred molecular structure from mass spectrometry data

• MYCIN: Diagnosed blood infections and recommended antibiotics

• XCON: Converted customer orders into parts specifications, saving
DEC $40 million annually by 1986

11

12 CHAPTER 1. INTRODUCTION TO ARTIFICIAL INTELLIGENCE

1.1.3 Neural Networks Development

Neural networks have had a complex history in AI:

• 1943: McCulloch and Pitts introduced artificial neural networks, con-
necting neural circuitry and logic

• 1969: Minsky and Papert’s "Perceptrons" book showed limitations of
linear models (unable to solve XOR), which slowed neural networks
research

• 1986: Rumelhardt, Hinton, and Williams popularized backpropagation
for training multi-layer networks

• 1989: LeCun applied convolutional neural networks to recognize hand-
written digits for USPS

1.1.4 Deep Learning Revolution

Deep learning has transformed AI in recent years:

• AlexNet (2012): Made huge gains in object recognition, transforming
computer vision

• AlphaGo (2016): Used deep reinforcement learning to defeat world
champion Lee Sedol

• Foundation Models (since 2019): GPT series, DALL·E, and other large
language and multimodal models have shown impressive capabilities
across various domains

1.2 AI Agent Architecture

1.2.1 Definition of Intelligent Agents

An intelligent (or rational) agent is an entity that:

• Perceives its environment through sensors

• Acts upon the environment through actuators

• Aims to achieve its goals as much as possible given available informa-
tion

• Can be viewed abstractly as a function mapping perception sequences
to actions:

f : P ∗ → A

where P ∗ represents all possible sequences of perceptions and A repre-
sents actions

1.2. AI AGENT ARCHITECTURE 13

1.2.2 PEAS Framework

To design a rational agent, we must specify the PEAS components:

• Performance measure: How success is evaluated

• Environment: The context in which the agent operates

• Actuators: How the agent can execute actions

• Sensors: How the agent perceives the environment

Example for an autonomous taxi:

Component Description
Performance Measure Safety, reaching destination, profit, legal operation, passen-

ger comfort, etc.
Environment Roads, traffic, pedestrians, passengers, weather conditions,

etc.
Actuators Steering, acceleration, braking, signals, display, etc.
Sensors Cameras, LIDAR, GPS, speedometer, engine sensors, etc.

Table 1.1: PEAS example for an autonomous taxi

1.2.3 Environment Types

Environment properties significantly impact agent design:

Property Description
Observable vs. Partially Observable Whether the agent’s sensors give access to the complete state

of the environment
Deterministic vs. Stochastic Whether the next state is completely determined by the cur-

rent state and action
Episodic vs. Sequential Whether the agent’s experience is divided into independent

episodes
Static vs. Dynamic Whether the environment can change while the agent is de-

liberating
Discrete vs. Continuous Whether the state of the environment has a finite number of

distinct states
Single-agent vs. Multi-agent Whether the agent is operating alone or with other agents

Table 1.2: Environment properties affecting agent design

1.2.4 Agent Types

Four main types of agents with increasing complexity:

14 CHAPTER 1. INTRODUCTION TO ARTIFICIAL INTELLIGENCE

Simple Reflex Agents

• Select actions based only on current percept

• Implement condition-action rules (if-then)

• No memory of past percepts

• Limited in partially observable environments

Agent

Environment

Condition-action rules

Sensors Actuators

Current state
Action

Figure 1.1: Simple reflex agent architecture

Model-Based Reflex Agents

• Maintain internal state tracking the unobserved aspects of the world

• Update state based on percept history and environment model

• Select actions using condition-action rules based on current state

Agent

Environment

State

World Model

Condition-action rules
Sensors Actuators

Percepts
State update

Current state
Action

Figure 1.2: Model-based reflex agent architecture

1.2. AI AGENT ARCHITECTURE 15

Goal-Based Agents

• Consider future actions and the desirability of their outcomes

• Search and planning capabilities to find action sequences that achieve
goals

• More flexible than reflex agents as explicit goals can be modified

Agent

Environment

State

World Model

Goals

What actions will work?
Sensors Actuators

Percepts
State update

Current state Goals
Action

Figure 1.3: Goal-based agent architecture

Utility-Based Agents

• Maximize "happiness" or utility function that maps states to real num-
bers

• Can handle conflicting goals and uncertainty in action outcomes

• Makes optimal decisions in complex environments

Learning Agents

• Improve performance through experience

• Can start with little knowledge and become more competent over time

• Components: learning element (improves performance), performance
element (selects actions), critic (provides feedback), problem generator
(suggests exploratory actions)

16 CHAPTER 1. INTRODUCTION TO ARTIFICIAL INTELLIGENCE

Agent

Environment

State

World Model Utility Function

What will make me happiest?Sensors Actuators

Percepts
State update

Current state
Utility

Action

Figure 1.4: Utility-based agent architecture

1.3 Environment Representations

Different ways to represent the environment:

• Atomic representation: Each state is indivisible, no internal struc-
ture

• Factored representation: States split into a fixed set of variables or
attributes

• Structured representation: Objects and their various relationships
can be described explicitly

Chapter 2

Problem Solving and Search

2.1 Problem Formulation

A problem can be formally defined by four components:

• Initial state: The starting situation

• Successor function: Defines available actions and their results

• Goal test: Determines if a given state is a goal state

• Path cost: Function that assigns a cost to each path

Alternatively, we can separate:

• Actions: What can be performed in a given state

• Transition model: The effect of each action

A solution is a sequence of actions leading from the initial state to a goal
state.

2.2 Uninformed Search Strategies

Uninformed (or blind) search strategies use only the information provided in
the problem definition.

2.2.1 Breadth-First Search (BFS)

• Expands shallowest unexpanded node first

• Implementation: fringe is a FIFO queue

• Properties:

– Complete: Yes (if branching factor b is finite)

17

18 CHAPTER 2. PROBLEM SOLVING AND SEARCH

– Time complexity: O(bd) where d is solution depth
– Space complexity: O(bd)

– Optimal: Yes (if all step costs are equal)

2.2.2 Uniform-Cost Search

• Expands least-cost unexpanded node first

• Implementation: fringe is a priority queue ordered by path cost

• Equivalent to BFS if all step costs are equal

• Properties:

– Complete: Yes (if step costs ≥ ϵ > 0)
– Time complexity: O(b1+⌊C∗/ϵ⌋) where C∗ is the cost of optimal

solution
– Space complexity: O(b1+⌊C∗/ϵ⌋)

– Optimal: Yes

2.2.3 Depth-First Search (DFS)

• Expands deepest unexpanded node first

• Implementation: fringe is a LIFO queue (stack)

• Properties:

– Complete: No (can get stuck in infinite loops)
– Complete in finite spaces with cycle detection
– Time complexity: O(bm) where m is maximum depth
– Space complexity: O(bm)

– Optimal: No

2.2.4 Iterative Deepening Search (IDS)

• Performs DFS with increasing depth limits

• Combines benefits of DFS (space efficiency) and BFS (completeness
and optimality)

• Properties:

– Complete: Yes (if b is finite)
– Time complexity: O(bd)

– Space complexity: O(bd)

– Optimal: Yes (if all step costs are equal)

2.3. INFORMED SEARCH STRATEGIES 19

2.2.5 Bidirectional Search

• Searches forward from initial state and backward from goal

• Terminates when the two searches meet

• Properties:

– Complete: Yes (if b is finite)

– Time complexity: O(bd/2)

– Space complexity: O(bd/2)

– Optimal: Yes (if using BFS in both directions)

2.3 Informed Search Strategies

Informed search strategies use problem-specific knowledge beyond the defi-
nition of the problem to find solutions more efficiently.

2.3.1 Best-First Search

• Uses an evaluation function f(n) for each node

• Expands the node with the lowest f(n) value

• Implementation: fringe is a priority queue ordered by f(n)

2.3.2 Greedy Search

• Evaluation function f(n) = h(n) (heuristic function)

• h(n) estimates cost from n to the nearest goal

• Expands node that appears to be closest to goal

• Properties:

– Complete: No (can get stuck in loops)

– Complete in finite space with repeated-state checking

– Time complexity: O(bm), but a good heuristic can significantly
improve this

– Space complexity: O(bm)

– Optimal: No

20 CHAPTER 2. PROBLEM SOLVING AND SEARCH

2.3.3 A* Search

• Evaluation function f(n) = g(n) + h(n)

• g(n) is the cost from start to node n

• h(n) is the estimated cost from n to goal

• Requires an admissible heuristic (never overestimates)

• Properties:

– Complete: Yes (unless there are infinitely many nodes with f ≤
f(G))

– Time complexity: Exponential in [relative error in h × length of
solution]

– Space complexity: Keeps all nodes in memory

– Optimal: Yes, if h(n) is admissible

2.3.4 Consistency in Heuristics

A heuristic is consistent (or monotonic) if:

h(n) ≤ c(n, a, n′) + h(n′)

where c(n, a, n′) is the cost of reaching n′ from n via action a.
If h is consistent, then:

f(n′) = g(n′) + h(n′) = g(n) + c(n, a, n′) + h(n′) ≥ g(n) + h(n) = f(n)

This means f(n) is non-decreasing along any path, ensuring optimality
in graph search.

2.3.5 Memory-Bounded Search Algorithms

A* has high memory requirements. Several alternatives exist:

Iterative Deepening A* (IDA*)

• Like iterative deepening but uses f -value cutoffs

• At each iteration, performs depth-first search with a cutoff on f(n)

• Memory complexity: O(bd)

2.4. LOCAL SEARCH ALGORITHMS 21

Recursive Best-First Search (RBFS)

• Recursive algorithm that attempts to mimic A* but with linear space

• Keeps track of the f -value of the best alternative path

• Backs up when current node exceeds this alternative value

• Memory complexity: O(bd)

Simplified Memory-Bounded A* (SMA*)

• Expands best nodes like A* until memory is full

• When memory is full, drops the worst leaf node

• Stores the f -value of dropped nodes with their parents

• Properties:

– Complete only if solution can be kept in memory
– Optimal if any optimal solution is reachable (otherwise returns

best reachable solution)

2.3.6 Heuristic Functions

• A heuristic function h(n) estimates the cost from state n to the goal

• An admissible heuristic never overestimates the true cost

• A consistent heuristic satisfies the triangle inequality

• If h2(n) ≥ h1(n) for all n (both admissible), then h2 dominates h1 and
is better for search

• Admissible heuristics can be derived from relaxed problems

• h(n) = max(ha(n), hb(n)) combines admissible heuristics into a stronger
one

Example: For the 8-puzzle:

• h1(n) = number of misplaced tiles

• h2(n) = sum of Manhattan distances of each tile from its goal position

2.4 Local Search Algorithms

Local search algorithms keep only a current state and try to improve it.
Useful for optimization problems where the path to the solution is irrelevant.

22 CHAPTER 2. PROBLEM SOLVING AND SEARCH

2.4.1 Hill Climbing

• Moves to neighbor with highest value

• Terminates at a local maximum

• Problems: local maxima, plateaus, ridges

• Variants:

– Stochastic hill climbing: chooses randomly among uphill moves
– First-choice hill climbing: generates successors randomly until

finding an improvement
– Random-restart hill climbing: performs a series of hill climbs from

random initial states

2.4.2 Simulated Annealing

• Allows "bad" moves to escape local optima

• Probability of accepting a worse state depends on:

– How much worse it is
– A temperature parameter that decreases over time

• Probability of accepting a move that decreases value by ∆E at tem-
perature T :

P (accept) = e−∆E/T

• Guaranteed to find global optimum if cooled slowly enough

2.4.3 Local Beam Search

• Keeps track of k states rather than just one

• Generates all successors of these k states

• Selects the k best successors from the entire list

• Problem: Can still get stuck if all k states end up on same local hill

2.4.4 Genetic Algorithms

• Maintain a population of states (individuals)

• New generation formed by:

– Selection: Choose pairs based on fitness
– Crossover: Combine parts of two individuals

2.5. ONLINE SEARCH 23

– Mutation: Random changes to introduce diversity

• Works best when subcomponents of a solution are meaningful

2.5 Online Search

In online search, the agent doesn’t know the transition model or what states
exist.

2.5.1 Online Search Characteristics

• Agent knows only:

– Actions available in the current state

– Step cost function

– Goal test

• Must interleave computation and action

• Exploration is required to find good solutions

2.5.2 Online Search Algorithms

Online Depth-First Search

• Applies DFS in an online setting

• Keeps track of unexplored actions and paths taken

• Backtracks when necessary

• Works only in safely explorable state spaces

Learning Real-Time A* (LRTA*)

• Maintains cost estimates H(s) for each visited state

• Initially, H(s) = h(s) (heuristic value)

• Updates H(s) based on experience:

H(s)← min
a

(c(s, a, s′) +H(s′))

• Selects action with lowest estimated total cost

• Eventually learns accurate cost estimates and finds optimal paths

24 CHAPTER 2. PROBLEM SOLVING AND SEARCH

Chapter 3

Adversarial Search

3.1 Game Theory Basics

Adversarial search deals with environments where multiple agents have con-
flicting goals.

3.1.1 Game Types

Games can be categorized along several dimensions:

• Perfect vs. imperfect information

• Deterministic vs. stochastic

• Zero-sum vs. general-sum

• Sequential vs. simultaneous moves

3.1.2 Game Representation

Games are typically represented as:

• Initial state

• Players (often MAX and MIN in two-player games)

• Actions available to each player in each state

• Transition model defining results of actions

• Terminal test to identify end of game

• Utility function (or payoff) defining outcome value for each player

25

26 CHAPTER 3. ADVERSARIAL SEARCH

3.2 Minimax Algorithm

For deterministic, perfect-information, zero-sum games:

• MAX tries to maximize the score

• MIN tries to minimize the score

• Optimal strategy: Choose move that leads to best achievable outcome
against optimal opponent

Algorithm 1 Minimax Algorithm
1: function Minimax(state)
2: if Terminal-Test(state) then return Utility(state)
3: end if
4: if Player(state) = MAX then
5: value ← −∞
6: for all action in Actions(state) do
7: value ← MAX(value, Minimax(Result(state, action)))
8: end for
9: else

10: value ←∞
11: for all action in Actions(state) do
12: value ← MIN(value, Minimax(Result(state, action)))
13: end for
14: end ifreturn value
15: end function

3.2.1 Minimax Properties

• Complete: Yes, if tree is finite

• Optimal: Yes, against optimal opponent

• Time complexity: O(bm) where b is branching factor and m is maxi-
mum depth

• Space complexity: O(bm) with depth-first exploration

3.3 Alpha-Beta Pruning

Alpha-beta pruning is an optimization for the minimax algorithm that elim-
inates branches that cannot influence the final decision.

3.3. ALPHA-BETA PRUNING 27

• α = best value found so far for MAX along the current path

• β = best value found so far for MIN along the current path

• Prune when current node’s value is guaranteed to be worse than an
alternative

Algorithm 2 Alpha-Beta Pruning Algorithm
1: function Alpha-Beta-Search(state)
2: value ← Max-Value(state, −∞, ∞) return action that produces

value
3: end function
4: function Max-Value(state, α, β)
5: if Terminal-Test(state) then return Utility(state)
6: end if
7: value ← −∞
8: for all action in Actions(state) do
9: value ← MAX(value, Min-Value(Result(state, action), α, β))

10: if value ≥ β then return value ▷ Prune
11: end if
12: α← MAX(α, value)
13: end forreturn value
14: end function
15: function Min-Value(state, α, β)
16: if Terminal-Test(state) then return Utility(state)
17: end if
18: value ←∞
19: for all action in Actions(state) do
20: value ← MIN(value, Max-Value(Result(state, action), α, β))
21: if value ≤ α then return value ▷ Prune
22: end if
23: β ← MIN(β, value)
24: end forreturn value
25: end function

3.3.1 Alpha-Beta Properties

• Does not affect final result compared to minimax

• Best-case time complexity: O(bm/2) with perfect ordering

• Perfect ordering: examine best moves first

• With good move ordering, can effectively "double" the search depth

28 CHAPTER 3. ADVERSARIAL SEARCH

3.4 Resource Limits and Evaluation Functions

In practice, we can’t search to terminal states for complex games like chess.

3.4.1 Evaluation Functions

• Replace utility function with heuristic evaluation function

• Estimate the expected utility of the game from a given position

• Often a weighted linear sum of features:

eval(s) = w1f1(s) + w2f2(s) + . . .+ wnfn(s)

• Example (chess): eval(s) = w1 ·material + w2 ·mobility + . . .

3.4.2 Cutoff Test

• Replace terminal test with a cutoff test

• Typically based on maximum depth and sometimes other factors

• Apply evaluation function at cutoff nodes

3.4.3 Horizon Effect

• Problem where an agent delays inevitable negative events so they fall
beyond the search horizon

• Solutions:

– Quiescence search: Continue search at "unstable" positions
– Singular extensions: Extend search for particularly promising or

threatening moves

3.5 Games with Chance

For games with randomness (dice, cards, etc.), we need to consider expected
outcomes.

3.5.1 Expectiminimax

3.5.2 Expectiminimax Properties

• Time complexity: O(bm · nm) where n is number of chance outcomes

• Exact utility values matter (not just their ordering)

• Alpha-beta pruning is less effective but still possible

3.6. PARTIALLY OBSERVABLE GAMES 29

Algorithm 3 Expectiminimax Algorithm
1: function Expectiminimax(state)
2: if Terminal-Test(state) then return Utility(state)
3: end if
4: if Player(state) = MAX then
5: value ← −∞
6: for all action in Actions(state) do
7: value ← MAX(value, Expectiminimax(Result(state, action)))
8: end for
9: else if Player(state) = MIN then

10: value ←∞
11: for all action in Actions(state) do
12: value ← MIN(value, Expectiminimax(Result(state, action)))
13: end for
14: else if Player(state) = CHANCE then
15: value ← 0
16: for all outcome r with probability P(r) do
17: value ← value + P(r) * Expectiminimax(Result(state, r))
18: end for
19: end ifreturn value
20: end function

3.6 Partially Observable Games

In games like poker or bridge, players don’t have perfect information about
the state.

3.6.1 Information Sets

• An information set is a collection of states that are indistinguishable
to the player

• Players must use the same strategy for all states in an information set

3.6.2 Strategies for Partially Observable Games

• Determinization: Sample from possible game states and apply perfect-
information techniques

• State evaluation: Compute expected value over all possible actual
states

• Perfect information Monte Carlo: Repeatedly sample determinizations
and search them

30 CHAPTER 3. ADVERSARIAL SEARCH

• Information set search: Consider all possible states consistent with the
observed history

Chapter 4

Knowledge Representation:
Propositional Logic

4.1 Knowledge-Based Agents

Knowledge-based agents use a knowledge base (KB) to represent facts about
the world and use logical inference to make decisions.

4.1.1 Architecture

• TELL: Informs the KB what the agent perceives

• ASK: Queries the KB about what action to take

• The knowledge base consists of sentences in a formal language

4.2 Propositional Logic

4.2.1 Syntax

• Atomic sentences: True, False, P, Q, R, ...

• Complex sentences formed using logical connectives:

– Negation: ¬ (not)

– Conjunction: ∧ (and)

– Disjunction: ∨ (or)

– Implication: ⇒ (if-then)

– Biconditional: ⇔ (if and only if)

31

32CHAPTER 4. KNOWLEDGE REPRESENTATION: PROPOSITIONAL LOGIC

4.2.2 Semantics

• Truth values assigned to atomic sentences

• Truth values of complex sentences determined by truth tables

• A model m is an assignment of truth values to all propositional symbols

• m is a model of a sentence α if α is true in m

• M(α) is the set of all models of α

4.2.3 Entailment

• KB |= α means "α is entailed by KB"

• This holds if α is true in all models where KB is true

• Formally: KB |= α if and only if M(KB) ⊆M(α)

4.3 Inference Algorithms

4.3.1 Inference by Enumeration

• List all possible models

• Check each model to see if it satisfies KB

• For each such model, check if it satisfies α

• Time complexity: O(2n) for n symbols

4.3.2 Forward Chaining

For KB of Horn clauses (clauses with at most one positive literal):

• Applies Modus Ponens repeatedly

• Start with known atomic facts

• Apply rules whose premises are satisfied to derive new facts

• Continue until query is derived or no new facts can be derived

• Complete for Horn clause KBs

• Linear time complexity in the size of the KB

4.3. INFERENCE ALGORITHMS 33

Algorithm 4 Forward Chaining Algorithm
1: function FC-Entails?(KB, q)
2: count ← a table mapping clauses to number of unsatisfied premises
3: inferred ← a table mapping symbols to boolean (all false initially)
4: agenda ← a queue of symbols known to be true in KB
5: while agenda is not empty do
6: p ← Pop(agenda)
7: if p = q then return true
8: end if
9: if inferred[p] = false then

10: inferred[p] ← true
11: for all clause c in KB where p is in c.PREMISE do
12: decrement count[c]
13: if count[c] = 0 then
14: add c.CONCLUSION to agenda
15: end if
16: end for
17: end if
18: end whilereturn false
19: end function

4.3.3 Backward Chaining

• Works backward from the query

• Find rules that could conclude the query

• Recursively prove the premises of these rules

• Depth-first recursive proof search

• Can be more efficient by avoiding irrelevant facts

4.3.4 Resolution

• Complete inference method for propositional logic

• Requires conversion to Conjunctive Normal Form (CNF)

• CNF: Conjunction of disjunctions of literals

• Resolution rule: ℓ1∨···∨ℓk, m1∨···∨mn

ℓ1∨···∨ℓi−1∨ℓi+1∨···∨ℓk∨m1∨···∨mj−1∨mj+1∨···∨mn
where ℓi

and mj are complementary literals

34CHAPTER 4. KNOWLEDGE REPRESENTATION: PROPOSITIONAL LOGIC

Algorithm 5 Backward Chaining Algorithm
1: function BC-Entails?(KB, q) return BC-Or(KB, q, {})
2: end function
3: function BC-Or(KB, goal, substitution)
4: if substitution = failure then return false
5: end if
6: if goal is empty then return substitution
7: end if
8: first, rest ← First(goal), Rest(goal)
9: for all rule r in KB do

10: (lhs ⇒ rhs) ← standardize-variables(r)
11: for all θ in BC-And(KB, lhs, Unify(rhs, first, substitution)) do
12: result ← BC-Or(KB, rest, θ)
13: if result ̸= failure then return result
14: end if
15: end for
16: end forreturn failure
17: end function
18: function BC-And(KB, goals, substitution)
19: if substitution = failure then return {}
20: end if
21: if goals is empty then return {substitution}
22: end if
23: first, rest ← First(goals), Rest(goals)
24: return ∪θ∈BC-Or(KB,first,substitution)BC-And(KB, rest, θ)
25: end function

Converting to CNF

Steps to convert a sentence to CNF:

1. Eliminate biconditionals: α⇔ β becomes (α⇒ β) ∧ (β ⇒ α)

2. Eliminate implications: α⇒ β becomes ¬α ∨ β

3. Move negation inwards using De Morgan’s laws:

• ¬(α ∧ β) becomes ¬α ∨ ¬β

• ¬(α ∨ β) becomes ¬α ∧ ¬β

• ¬¬α becomes α

4. Apply distributivity: α ∨ (β ∧ γ) becomes (α ∨ β) ∧ (α ∨ γ)

4.3. INFERENCE ALGORITHMS 35

Algorithm 6 Resolution Algorithm
1: function PL-Resolution(KB, α)
2: clauses ← the set of clauses in the CNF representation of KB ∧ ¬α
3: new ← {}
4: while true do
5: for all pairs of clauses Ci, Cj in clauses do
6: resolvents ← PL-Resolve(Ci, Cj)
7: if resolvents contains the empty clause then return true
8: end if
9: new ← new ∪ resolvents

10: end for
11: if new ⊆ clauses then return false
12: end if
13: clauses ← clauses ∪ new
14: end while
15: end function

Completeness of Resolution

Resolution is complete: if KB |= α, then resolution will derive a contradic-
tion from KB ∧ ¬α.

This is proven through the ground resolution theorem:

• If a set of clauses is unsatisfiable, then the resolution closure of those
clauses contains the empty clause

• The resolution closure is the set of all clauses derivable by repeated
application of the resolution rule

36CHAPTER 4. KNOWLEDGE REPRESENTATION: PROPOSITIONAL LOGIC

Chapter 5

First-Order Logic

5.1 Limitations of Propositional Logic

• Cannot express general relationships about objects

• Cannot express properties that hold for all or some objects

• Requires separate proposition for each fact about each object

5.2 First-Order Logic Syntax

5.2.1 Basic Elements

• Constants: Objects in the domain (e.g., KingJohn, 2, UCB)

• Predicates: Relations or properties (e.g., Brother, >)

• Functions: Mappings from objects to objects (e.g., Sqrt, LeftLegOf)

• Variables: Stand for objects (e.g., x, y, a, b)

• Connectives: ∧, ∨, ¬, ⇒, ⇔

• Equality: =

• Quantifiers: ∀ (universal), ∃ (existential)

5.2.2 Terms and Sentences

• Term: Constant, variable, or function applied to terms

• Atomic sentence: Predicate applied to terms, or equality between terms

• Complex sentences: Built from atomic sentences using connectives and
quantifiers

37

38 CHAPTER 5. FIRST-ORDER LOGIC

Examples:

• Brother(KingJohn,RichardTheLionheart)

• ∀x King(x) ∧Greedy(x)⇒ Evil(x)

• ∃x Crown(x) ∧OnHead(x, John)

5.3 First-Order Logic Semantics

5.3.1 Models

• Domain: Set of objects in the world

• Interpretation: Maps constants to objects, predicates to relations,
functions to functional relations

• Model: Domain + Interpretation

5.3.2 Quantifiers

• Universal quantification: ∀x P (x) is true iff P (x) is true for all values
of x in the domain

• Existential quantification: ∃x P (x) is true iff P (x) is true for at least
one value of x in the domain

Properties of quantifiers:

• ∀x∀y is the same as ∀y∀x

• ∃x∃y is the same as ∃y∃x

• ∀x∃y is not the same as ∃y∀x

• Quantifier duality:

– ∀x P (x) ≡ ¬∃x ¬P (x)

– ∃x P (x) ≡ ¬∀x ¬P (x)

5.4 Inference in First-Order Logic

5.4.1 Universal Instantiation (UI)

∀v α

α[v/g]

where α[v/g] means α with variable v replaced by ground term g.

5.4. INFERENCE IN FIRST-ORDER LOGIC 39

Example:

∀x King(x) ∧Greedy(x)⇒ Evil(x)

yields

King(John) ∧Greedy(John)⇒ Evil(John)

5.4.2 Existential Instantiation (EI)

∃v α

α[v/k]

where k is a new constant symbol not occurring elsewhere in the KB.
Example:

∃x Crown(x) ∧OnHead(x, John)

yields

Crown(C1) ∧OnHead(C1, John)

where C1 is a new constant symbol (Skolem constant).

5.4.3 Unification

• Unification finds substitutions that make different logical expressions
identical

• θ is a unifier for expressions p and q if pθ = qθ

• Most general unifier (MGU) is the unifier that makes the fewest com-
mitments

5.4.4 Generalized Modus Ponens (GMP)

p′1, p
′
2, . . . , p

′
n, (p1 ∧ p2 ∧ . . . ∧ pn ⇒ q)

qθ

where θ is a unifier such that p′iθ = piθ for all i.

5.4.5 Forward Chaining for FOL

• Similar to propositional forward chaining

• Uses unification to match rule premises with facts

• Complete for first-order definite clauses

40 CHAPTER 5. FIRST-ORDER LOGIC

Algorithm 7 Unification Algorithm
1: function Unify(α, β, θ)
2: if θ = failure then return failure
3: else if α = β then return θ
4: else if α is a variable then return Unify-Var(α, β, θ)
5: else if β is a variable then return Unify-Var(β, α, θ)
6: else if α and β are compounds then return Unify(args(α), args(β),

Unify(op(α), op(β), θ))
7: else if α and β are lists then return Unify(rest(α), rest(β),

Unify(first(α), first(β), θ))
8: elsereturn failure
9: end if

10: end function

5.4.6 Backward Chaining for FOL

• Similar to propositional backward chaining

• Uses unification to match goals with rule conclusions

• Forms the basis for logic programming (e.g., Prolog)

5.4.7 Resolution for FOL

• Generalizes propositional resolution

• Requires conversion to Conjunctive Normal Form

• Uses unification to match complementary literals

• Complete for first-order logic

Converting to CNF

Steps to convert a first-order logic sentence to CNF:

1. Eliminate implications and biconditionals

2. Move negation inwards

3. Standardize variables (each quantifier should use a different variable)

4. Skolemize (eliminate existential quantifiers)

5. Drop universal quantifiers

6. Distribute ∧ over ∨

5.4. INFERENCE IN FIRST-ORDER LOGIC 41

Skolemization

• Replace existentially quantified variables with Skolem functions or con-
stants

• If ∃x is not within the scope of any universal quantifier, replace x with
a new constant

• If ∃x is within the scope of universal quantifiers ∀y1, . . . ,∀yn, replace
x with a new function f(y1, . . . , yn)

Example:

∀x [∃y Animal(y) ∧ Loves(x, y)]⇒ ∃z Loves(z, x)

becomes

∀x [Animal(F (x)) ∧ Loves(x, F (x))]⇒ Loves(G(x), x)

where F and G are Skolem functions.

42 CHAPTER 5. FIRST-ORDER LOGIC

Chapter 6

Uncertainty and Probabilistic
Reasoning

6.1 Motivation

Logical agents have significant limitations:

• Laziness: Too much work to list all possible exceptions to rules

• Theoretical ignorance: Not all domains have complete theories

• Practical ignorance: Not all relevant facts are knowable

6.2 Probability Theory Basics

6.2.1 Probability Model

• Sample space Ω: Set of all possible worlds

• Probability distribution P : Function assigning probabilities to worlds

• Event: Subset of possible worlds

• P (a): Probability of proposition a being true

6.2.2 Axioms of Probability

• 0 ≤ P (a) ≤ 1 for any proposition a

• P (True) = 1 and P (False) = 0

• P (a ∨ b) = P (a) + P (b)− P (a ∧ b)

43

44CHAPTER 6. UNCERTAINTY AND PROBABILISTIC REASONING

6.2.3 Conditional Probability

• P (a|b): Probability of a given that b is true

• Definition: P (a|b) = P (a∧b)
P (b) if P (b) ̸= 0

• Product rule: P (a ∧ b) = P (a|b)P (b) = P (b|a)P (a)

6.3 Inference Using Full Joint Distributions

• The joint distribution specifies P (X1, X2, . . . , Xn) for all combinations
of values of the random variables

• Any probability query can be answered by summing over the joint
distribution

• For query P (Y |e) where e is evidence:

P (Y |e) = α
∑
z

P (Y, z, e)

where z represents all unobserved variables

• Normalization constant α = 1
P (e) ensures probabilities sum to 1

6.4 Independence

• Variables X and Y are independent if P (X|Y) = P (X) or equivalently
P (Y |X) = P (Y)

• Independence can also be expressed as P (X,Y) = P (X)P (Y)

• Independence allows decomposing the joint distribution:

P (X1, X2, . . . , Xn) =

n∏
i=1

P (Xi)

6.5 Conditional Independence

• Variables X and Y are conditionally independent given Z if P (X|Y,Z) =
P (X|Z)

• Equivalent forms:

– P (Y |X,Z) = P (Y |Z)

– P (X,Y |Z) = P (X|Z)P (Y |Z)

• Allows more compact representations even when variables are not com-
pletely independent

6.6. BAYES’ RULE 45

6.6 Bayes’ Rule

• Derived from the product rule:

P (a|b) = P (b|a)P (a)

P (b)

• Useful for computing diagnostic probabilities from causal probabilities

• E.g., P (disease|symptoms) = P (symptoms|disease)P (disease)
P (symptoms)

6.7 Naive Bayes Models

• Structure: Cause → Effects

• Assumes effects are conditionally independent given the cause:

P (Cause,Effect1, . . . , Effectn) = P (Cause)

n∏
i=1

P (Effecti|Cause)

• Total number of parameters is linear in n

• Widely used for classification despite simplistic assumptions

6.8 Bayesian Networks

6.8.1 Structure

• Directed acyclic graph representing dependencies among variables

• Each node corresponds to a random variable

• Each node Xi has a conditional probability distribution P (Xi|Parents(Xi))

• The network represents the joint distribution as:

P (X1, X2, . . . , Xn) =
n∏

i=1

P (Xi|Parents(Xi))

6.8.2 Example Bayesian Network

6.8.3 Advantages of Bayesian Networks

• Compact representation: Only need to specify conditional probabilities
for each node given its parents

• For n Boolean variables:

46CHAPTER 6. UNCERTAINTY AND PROBABILISTIC REASONING

B

A E

J M

Figure 6.1: Example Bayesian network with 5 variables

– Full joint distribution: 2n − 1 parameters
– Bayesian network: If each node has at most k parents, only n · 2k

parameters

• Makes independence assumptions explicit in the graph structure

6.9 Inference in Bayesian Networks

6.9.1 Exact Inference

• Variable elimination algorithm:

– Eliminate hidden variables one by one
– For each variable, create a factor (conditional probability func-

tion)
– Compute new factors by summing out variables

• Complexity depends on graph structure:

– Singly connected networks (polytrees): O(n·dk) where d is domain
size and k is maximum number of parents

– Multiply connected networks: NP-hard in general

6.9.2 Approximate Inference

• Direct sampling: Generate samples from the joint distribution and
count

• Rejection sampling: Generate samples and reject those inconsistent
with evidence

• Likelihood weighting: Fix evidence variables, sample other variables,
weight by likelihood of evidence

6.9. INFERENCE IN BAYESIAN NETWORKS 47

• Markov Chain Monte Carlo (MCMC): Generate samples by randomly
changing one variable at a time

48CHAPTER 6. UNCERTAINTY AND PROBABILISTIC REASONING

Chapter 7

Machine Learning

7.1 Introduction to Machine Learning

Machine learning allows systems to improve from experience without being
explicitly programmed.

7.1.1 When to Use Machine Learning

• Problems where humans don’t know how to program a solution

• Problems where solutions need to adapt to changing environments

• Problems with large amounts of data containing implicitly encoded
information

7.1.2 Components of Learning

Learning can be characterized by three key components:

• Task (T): What the system is trying to do

• Performance measure (P): How success is evaluated

• Experience (E): Data the system uses to improve

7.2 Learning Paradigms

7.2.1 Supervised Learning

• Learn a function from labeled examples (input-output pairs)

• Classification: Output is discrete (categories)

• Regression: Output is continuous (numbers)

49

50 CHAPTER 7. MACHINE LEARNING

7.2.2 Unsupervised Learning

• Learn patterns from unlabeled data

• Clustering: Group similar examples

• Density estimation: Find distribution of data

• Dimensionality reduction: Represent data using fewer features

7.2.3 Reinforcement Learning

• Learn by interacting with an environment

• Receive rewards or penalties for actions

• Goal: Learn policy that maximizes expected reward

7.3 Hypothesis Space and Learning Algorithms

7.3.1 Hypothesis Space

• The set of all possible functions/models the learning algorithm can
represent

• Examples: Linear functions, decision trees, neural networks

• The choice of hypothesis space imposes an inductive bias

7.3.2 Empirical Risk Minimization

• Find hypothesis h ∈ H that minimizes error on training data

• Empirical error: Eemp(h) =
1
m

∑m
i=1 L(h(xi), yi)

• Loss function L measures disagreement between prediction and true
output

7.4 Model Complexity and Generalization

7.4.1 Overfitting and Underfitting

• Underfitting: Model is too simple to capture patterns in data

• Overfitting: Model fits training data too well, captures noise

• Bias-variance tradeoff:

– High bias: Model makes strong assumptions, tends to underfit
– High variance: Model is very flexible, tends to overfit

7.5. MACHINE LEARNING IN PRACTICE 51

7.4.2 VC Dimension

• Vapnik-Chervonenkis dimension: Measure of complexity for hypothesis
class

• The largest number of points that can be shattered (classified in all
possible ways) by the hypothesis class

• Higher VC dimension means more complex models

7.4.3 Confidence Intervals and Generalization

• True error Etrue(h) is bounded by empirical error plus confidence in-
terval:

Etrue(h) ≤ Eemp(h) +

√
V C(H) · log 2m

V C(H) + log 4
δ

m

with probability 1− δ, where m is the number of training examples

7.4.4 Structural Risk Minimization

• Balance between empirical error and model complexity

• Choose hypothesis minimizing sum of empirical error and complexity
penalty

• Regularization implements this principle by adding complexity penalty
to loss function

7.5 Machine Learning in Practice

7.5.1 Dataset Splitting

• Training set: Used to learn model parameters

• Validation set: Used for hyperparameter tuning and model selection

• Test set: Used for final evaluation of model performance

7.5.2 Model Selection

• Choose model type (e.g., decision tree, neural network)

• Select hyperparameters (e.g., depth of tree, learning rate)

• Use cross-validation to estimate performance

52 CHAPTER 7. MACHINE LEARNING

7.5.3 Data Preprocessing

• Feature scaling: Normalize or standardize features

• Feature selection: Choose most relevant features

• Feature engineering: Create new features from existing ones

7.6 Neural Networks and Deep Learning

7.6.1 Artificial Neuron

• Basic computational unit in neural networks

• Given inputs x1, x2, . . . , xn and weights w1, w2, . . . , wn:

net =

n∑
i=0

wixi

where x0 = 1 and w0 is the bias

• Output: o = σ(net) where σ is an activation function

• Common activation functions:

– Sigmoid: σ(x) = 1
1+e−x

– ReLU: σ(x) = max(0, x)

– Tanh: σ(x) = tanh(x)

7.6.2 Feedforward Neural Networks

• Arranged in layers: input layer, hidden layers, output layer

• Each neuron connected to all neurons in adjacent layers

• Forward phase: Compute output for given input

• Information flows only in forward direction

7.6.3 Backpropagation Algorithm

• Learning algorithm for neural networks

• Uses gradient descent to minimize error

• Forward phase: Compute outputs of all neurons

• Backward phase: Compute gradients of error with respect to weights

• Update weights: wij ← wij − η ∂E
∂wij

7.6. NEURAL NETWORKS AND DEEP LEARNING 53

7.6.4 Deep Learning

• Neural networks with many hidden layers

• Automatically learns hierarchical representations

• Key innovations:

– Better activation functions (ReLU)

– Efficient initialization

– Regularization techniques (dropout, batch normalization)

– Advanced optimization methods

– GPU acceleration

7.6.5 Convolutional Neural Networks (CNNs)

• Specialized architecture for processing grid-like data (images)

• Key components:

– Convolutional layers: Apply filters to detect features

– Pooling layers: Reduce spatial dimensions

– Fully connected layers: Perform final classification

• Translation invariance: Detect features regardless of position

• Parameter sharing: Same filter applied throughout the image

7.6.6 Transformers

• Self-attention mechanism: Focus on relevant parts of input

• Parallelizable computation (unlike RNNs)

• Architecture:

– Multi-head self-attention

– Position-wise feed-forward networks

– Residual connections and layer normalization

• Encoder-decoder structure or decoder-only (GPT) or encoder-only (BERT)

• Foundation for modern language models

54 CHAPTER 7. MACHINE LEARNING

Chapter 8

Reinforcement Learning

8.1 Introduction to Reinforcement Learning

Reinforcement learning is about learning by interaction with an environment
to achieve a goal.

Agent

Environment

State st Reward rtAction at

Figure 8.1: The agent-environment interaction in reinforcement learning

8.2 Markov Decision Processes (MDPs)

8.2.1 MDP Formulation

An MDP is defined by:

• Set of states S

• Set of actions A

• Transition model P (s′|s, a)

• Reward function R(s, a, s′)

• Discount factor γ ∈ [0, 1)

55

56 CHAPTER 8. REINFORCEMENT LEARNING

8.2.2 The Goal in MDPs

Find a policy π : S → A that maximizes expected cumulative discounted
reward:

E

[∞∑
t=0

γtrt

]

8.3 Value Functions

8.3.1 State-Value Function

The value of state s under policy π:

V π(s) = Eπ

[∞∑
t=0

γtrt|s0 = s

]

8.3.2 Action-Value Function (Q-Function)

The value of taking action a in state s under policy π:

Qπ(s, a) = Eπ

[∞∑
t=0

γtrt|s0 = s, a0 = a

]

8.3.3 Bellman Equations

Recursive relationship for value functions:

V π(s) =
∑
a

π(a|s)
∑
s′

P (s′|s, a)[R(s, a, s′) + γV π(s′)]

Qπ(s, a) =
∑
s′

P (s′|s, a)[R(s, a, s′) + γ
∑
a′

π(a′|s′)Qπ(s′, a′)]

8.3.4 Optimal Value Functions

The optimal value functions define the best possible performance:

V ∗(s) = max
π

V π(s) = max
a

Q∗(s, a)

Q∗(s, a) =
∑
s′

P (s′|s, a)[R(s, a, s′) + γV ∗(s′)]

8.3.5 Optimal Policy

Once we have Q∗, the optimal policy is:

π∗(s) = argmax
a

Q∗(s, a)

8.4. DYNAMIC PROGRAMMING METHODS 57

8.4 Dynamic Programming Methods

8.4.1 Policy Evaluation

Compute V π for a given policy π:

Vk+1(s) =
∑
a

π(a|s)
∑
s′

P (s′|s, a)[R(s, a, s′) + γVk(s
′)]

8.4.2 Policy Improvement

Improve the policy based on the current value function:

π′(s) = argmax
a

∑
s′

P (s′|s, a)[R(s, a, s′) + γV π(s′)]

8.4.3 Policy Iteration

Alternate between policy evaluation and policy improvement until conver-
gence.

8.4.4 Value Iteration

Directly compute V ∗ without explicitly representing the policy:

Vk+1(s) = max
a

∑
s′

P (s′|s, a)[R(s, a, s′) + γVk(s
′)]

8.5 Model-Free Learning

8.5.1 Monte Carlo Learning

• Learn directly from episodes of experience

• Update value estimates only at end of episode

• No bootstrapping, no need for model

• Every-visit MC:

V (s)← V (s) + α[Gt − V (s)]

where Gt =
∑T−t−1

k=0 γkrt+k+1 is the return from time t

8.5.2 Temporal Difference Learning

• Learn from incomplete episodes using bootstrapping

• TD(0) update:

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)]

• TD error: δt = rt+1 + γV (st+1)− V (st)

58 CHAPTER 8. REINFORCEMENT LEARNING

8.6 Q-Learning

8.6.1 Q-Learning Algorithm

• Off-policy TD control algorithm

• Learns Q∗ directly without policy evaluation

• Update rule:

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a

Q(st+1, a)−Q(st, at)]

• Convergence guaranteed in deterministic environments if all state-action
pairs are visited infinitely often

Algorithm 8 Q-Learning Algorithm
1: Initialize Q(s, a) for all s ∈ S, a ∈ A arbitrarily
2: for each episode do
3: Initialize state s
4: for each step of episode do
5: Choose action a from s using policy derived from Q (e.g., ϵ-greedy)
6: Take action a, observe reward r and next state s′

7: Q(s, a)← Q(s, a) + α[r + γmaxa′ Q(s′, a′)−Q(s, a)]
8: s← s′

9: end for
10: end for

8.6.2 Exploration vs. Exploitation

• Exploration: Try new actions to discover better policies

• Exploitation: Use current knowledge to maximize reward

• Common strategies:

– ϵ-greedy: Choose best action with probability 1−ϵ, random action
with probability ϵ

– Softmax: Choose actions with probability proportional to their
estimated values

– Optimistic initialization: Initialize Q-values optimistically to en-
courage exploration

8.7. FUNCTION APPROXIMATION 59

8.7 Function Approximation

8.7.1 Linear Function Approximation

• Represent Q-function as a linear function of features:

Q(s, a, w⃗) = w⃗T ϕ⃗(s, a)

• Update rule:

w⃗ ← w⃗ + α[r + γmax
a′

Q(s′, a′, w⃗)−Q(s, a, w⃗)]∇w⃗Q(s, a, w⃗)

8.7.2 Deep Q-Networks (DQN)

• Use neural networks to approximate Q-function

• Key innovations:

– Experience replay: Store transitions and train on random batches

– Target network: Separate network for generating targets

• Loss function:

L(w⃗) = E[(r + γmax
a′

Q(s′, a′, w⃗−)−Q(s, a, w⃗))2]

where w⃗− are parameters of the target network

8.8 Policy Gradient Methods

8.8.1 Policy Parameterization

• Directly parameterize the policy:

π(a|s, θ⃗) = P (a|s, θ⃗)

• For continuous actions, often use Gaussian policy:

π(a|s, θ⃗) = 1√
2πσ2

exp

(
−(a− µ(s, θ⃗))2

2σ2

)

8.8.2 Policy Gradient Theorem

∇
θ⃗
J(θ⃗) = Eπ

θ⃗
[∇

θ⃗
log π(a|s, θ⃗)Qπ(s, a)]

60 CHAPTER 8. REINFORCEMENT LEARNING

8.8.3 REINFORCE Algorithm

• Monte Carlo policy gradient method

• Update rule:

θ⃗ ← θ⃗ + αGt∇θ⃗
log π(at|st, θ⃗)

• High variance, often combined with baseline for variance reduction

8.9 Advanced Topics

8.9.1 Deep Reinforcement Learning

• Combines deep learning with reinforcement learning

• Successfully applied to:

– Games (AlphaGo, AlphaZero)

– Robotics

– Resource management

8.9.2 Multi-Agent Reinforcement Learning

• Multiple agents learning simultaneously

• Challenges:

– Non-stationary environment (other agents are learning)

– Coordination vs. competition

– Credit assignment

8.9.3 Hierarchical Reinforcement Learning

• Decompose complex tasks into hierarchies of subtasks

• Options framework: Temporally extended actions

• Helps with exploration and transfer learning

Chapter 9

Natural Language Processing

9.1 Introduction to NLP

Natural Language Processing (NLP) is the field focused on enabling com-
puters to understand, interpret, and generate human language.

9.1.1 Applications of NLP

• Machine translation

• Question answering

• Text summarization

• Sentiment analysis

• Speech recognition

• Conversational agents (chatbots)

9.2 Language Models

9.2.1 N-gram Models

• Model sequences of words using Markov assumption

• Probability of word depends only on n-1 previous words

• Unigram: P(w)

• Bigram: P(wi|wi−1)

• Trigram: P(wi|wi−2, wi−1)

61

62 CHAPTER 9. NATURAL LANGUAGE PROCESSING

• Maximum likelihood estimation:

P (wi|wi−1) =
Count(wi−1, wi)

Count(wi−1)

9.2.2 Smoothing

• Addresses zero probability problem for unseen n-grams

• Laplace (add-one) smoothing:

P (wi|wi−1) =
Count(wi−1, wi) + 1

Count(wi−1) + V

where V is vocabulary size

• Backoff models: Fall back to lower-order n-grams for unseen sequences

• Interpolation: Combine different order n-grams

P (wi|wi−2, wi−1) = λ3P (wi|wi−2, wi−1) + λ2P (wi|wi−1) + λ1P (wi)

9.2.3 Evaluation: Perplexity

• Measures how well a probability model predicts a sample

• Lower perplexity means better model

Perplexity(W) = P (w1, w2, . . . , wN)−
1
N

9.3 Text Classification

9.3.1 Naive Bayes Classifier

• Applies Bayes’ rule with conditional independence assumption

P (c|d) = P (d|c)P (c)

P (d)
∝ P (c)

n∏
i=1

P (xi|c)

where d is a document with features x1, . . . , xn and c is a class

• Used for spam detection, sentiment analysis, topic classification

9.3.2 Bag-of-Words Model

• Represents text as unordered collection of words

• Ignores grammar and word order

• Each document becomes a vector of word counts or frequencies

• Simple but effective for many classification tasks

9.4. WORD EMBEDDINGS 63

9.4 Word Embeddings

9.4.1 Distributional Semantics

• "You shall know a word by the company it keeps" (Firth, 1957)

• Words with similar contexts have similar meanings

• Words represented as dense vectors in continuous space

9.4.2 Word2Vec

• Learn word vectors by predicting context (Skip-gram) or predicting
word from context (CBOW)

• Captures semantic and syntactic relationships

• Vector arithmetic works: king - man + woman ≈ queen

9.4.3 GloVe (Global Vectors)

• Combines global matrix factorization with local context window meth-
ods

• Uses word co-occurrence statistics from corpus

• Learns vectors such that dot product equals log co-occurrence proba-
bility

9.5 Parts of Speech and Syntax

9.5.1 Parts of Speech (POS)

• Lexical categories: noun, verb, adjective, adverb, etc.

• Closed-class words: prepositions, determiners, pronouns, etc.

• Open-class words: nouns, verbs, adjectives, etc.

• Penn Treebank tagset: 45 tags (NN, VB, JJ, etc.)

9.5.2 POS Tagging

• Assigning part of speech to each word in text

• Challenges: words can have multiple POS depending on context

• HMM tagging: uses Viterbi algorithm to find most likely tag sequence

• Modern approaches: bidirectional RNNs, transformers

64 CHAPTER 9. NATURAL LANGUAGE PROCESSING

9.5.3 Syntactic Parsing

Constituency Parsing

• Represents sentence structure as nested constituents

• Based on phrase structure grammar

• Context-Free Grammar (CFG) formalism

• Algorithms: CKY, Earley parsing

Dependency Parsing

• Represents direct relationships between words

• Each word (except root) has exactly one head

• Labeled edges indicate grammatical relationships (subject, object, etc.)

• Algorithms: transition-based, graph-based parsing

9.6 Modern NLP with Deep Learning

9.6.1 Subword Models

• Address vocabulary limitations by breaking words into smaller units

• Byte Pair Encoding (BPE): Iteratively merge most frequent character
pairs

• WordPiece: Similar to BPE but uses likelihood improvement for merges

• Advantages:

– Handles out-of-vocabulary words

– Effective for morphologically rich languages

– Reduces vocabulary size while maintaining expressiveness

9.6.2 Transformer Architecture

• Introduced in "Attention is All You Need" (Vaswani et al., 2017)

• Key components:

– Multi-head self-attention

– Position-wise feed-forward networks

– Positional encodings

9.6. MODERN NLP WITH DEEP LEARNING 65

– Residual connections and layer normalization

• Captures long-range dependencies without recurrence

• Highly parallelizable

9.6.3 Pre-trained Language Models

Decoder-only Models (GPT)

• Generative Pre-trained Transformer

• Unidirectional (left-to-right) attention

• Pre-trained using language modeling objective

• Auto-regressive generation

• Examples: GPT-1, GPT-2, GPT-3, GPT-4

Encoder-only Models (BERT)

• Bidirectional Encoder Representations from Transformers

• Bidirectional attention over all tokens

• Pre-trained using masked language modeling

• Strong performance on understanding tasks

• Examples: BERT, RoBERTa, DeBERTa

Encoder-Decoder Models (T5)

• Text-to-Text Transfer Transformer

• Treats all NLP tasks as text-to-text problems

• Pre-trained using span corruption

• Versatile for both understanding and generation

• Examples: T5, BART, mT5

66 CHAPTER 9. NATURAL LANGUAGE PROCESSING

9.7 Evaluating NLP Systems

9.7.1 Intrinsic Evaluation

• Evaluates system on isolated task

• Metrics for classification: accuracy, precision, recall, F1 score

• Metrics for generation: BLEU, ROUGE, METEOR

• Metrics for language modeling: perplexity

9.7.2 Extrinsic Evaluation

• Evaluates system as part of larger application

• Measures real-world performance

• Example: evaluating a POS tagger by its impact on a parser

• More meaningful but more expensive

Chapter 10

Computer Vision

10.1 Introduction to Computer Vision

Computer vision is the field that enables computers to gain high-level un-
derstanding from digital images or videos.

10.1.1 Why Computer Vision is Useful

• Images and videos constitute a vast portion of digital data (approxi-
mately 90% of web data)

• Enables machines to extract meaningful information from visual inputs

• Applications span numerous domains:

– Medical imaging and diagnostics

– Autonomous vehicles and robotics

– Security and surveillance

– Augmented and virtual reality

– Content retrieval and organization

– Manufacturing quality control

– Human-computer interaction

• Growing importance with the advent of deep learning and access to
large visual datasets

10.2 Challenges in Computer Vision

Computer vision is inherently difficult due to several fundamental challenges:

67

68 CHAPTER 10. COMPUTER VISION

10.2.1 Variability in Appearance

• Lighting conditions: Same object appears different under varying
illumination

• Viewpoint changes: Objects look different when viewed from differ-
ent angles

• Scale variations: Objects can appear at different sizes in images

• Intra-class variation: Objects within the same category can differ
significantly

• Deformations: Non-rigid objects can change shape

• Occlusions: Objects may be partially hidden by other objects

10.2.2 Semantic Gap

• Bridging the gap between low-level pixel data and high-level semantic
understanding

• Computers see pixels; humans see meaning

• The challenge of moving from "what" (detection) to "why" (interpre-
tation)

10.2.3 Computational Challenges

• Processing high-resolution images and videos requires significant com-
putational resources

• Real-time vision applications demand efficient algorithms

• Balancing accuracy with computational efficiency

10.3 Image Formation and Representation

10.3.1 Image Formation Process

• Pinhole camera model: The simplest model of image formation

– Light rays pass through a small aperture (pinhole) and project
onto an image plane

– Creates an inverted image of the scene

• Lens-based cameras: Gather more light, but introduce distortions

10.4. TRADITIONAL COMPUTER VISION APPROACHES 69

• Perspective projection: 3D world points are mapped to 2D image
points

x′ = f
X

Z
, y′ = f

Y

Z
(10.1)

where (X,Y, Z) is a 3D point, (x′, y′) is its 2D projection, and f is the
focal length

10.3.2 Digital Image Representation

• Grayscale images: Single channel, intensity values typically in range
[0, 255]

– Represented as a 2D matrix of intensity values

– I(x, y) gives the intensity at position (x, y)

• Color images: Multiple channels, typically RGB (Red, Green, Blue)

– Represented as a 3D tensor with dimensions height × width ×
channels

– Each pixel has three values representing color components

• Image as a function: f : [a, b]× [c, d]→ [0, 255] or [0, 1]

10.4 Traditional Computer Vision Approaches

10.4.1 Filtering and Convolution

• Convolution operation: Basic building block of many vision algo-
rithms

(f ∗ h)[n,m] =
∑
k,l

f [k, l] · h[n− k,m− l] (10.2)

where f is the image, h is the kernel, and ∗ denotes convolution

• Linear filters: Weighted sum of pixel values in a neighborhood

– Gaussian filter: Blurring/smoothing to reduce noise

– Box filter: Simple averaging filter

– Sobel filter: Edge detection

70 CHAPTER 10. COMPUTER VISION

Original: Kernel: 1
9 Result:

Figure 10.1: Illustration of image convolution with a 3×3 averaging kernel.

10.4.2 Edge Detection

• Edges: Significant changes in image intensity that often correspond
to object boundaries

• First-order edge detection: Based on image gradients

– Sobel operator: Approximates the gradient magnitude and direc-
tion

– Prewitt operator: Similar to Sobel but with different kernel weights

• Second-order edge detection: Based on the Laplacian (second
derivative)

– Laplacian of Gaussian (LoG): Combines Gaussian smoothing with
Laplacian

– Difference of Gaussians (DoG): Approximation of LoG

• Canny edge detector: Multi-stage algorithm for robust edge detec-
tion

1. Gaussian smoothing to reduce noise

2. Gradient computation using Sobel filters

3. Non-maximum suppression to thin edges

4. Hysteresis thresholding to eliminate weak edges

10.4.3 Feature Extraction

• Local features: Distinctive points in the image that are useful for
matching and recognition

• Scale Invariant Feature Transform (SIFT):

– Detects keypoints that are invariant to scale, rotation, and mod-
erate illumination changes

– Process:

1. Scale-space extrema detection using Difference of Gaussians

10.5. TRADITIONAL OBJECT RECOGNITION PARADIGMS 71

position

intensity

position

first derivative

Edge position

Figure 10.2: Edge detection using first derivatives. The edge corresponds to
a peak in the first derivative of the intensity function.

2. Keypoint localization and filtering
3. Orientation assignment based on local gradients
4. Keypoint descriptor computation (128-dimensional vector)

• Other feature detectors/descriptors:

– SURF: Speeded-Up Robust Features, faster alternative to SIFT

– ORB: Oriented FAST and Rotated BRIEF, efficient binary de-
scriptor

– BRIEF: Binary Robust Independent Elementary Features

– FAST: Features from Accelerated Segment Test, corner detector

10.5 Traditional Object Recognition Paradigms

10.5.1 Bag of Visual Words

• Inspired by the Bag of Words model in text processing

• Process:

1. Extract local features (e.g., SIFT) from training images

2. Cluster features to create a "visual vocabulary" (codebook)

3. Represent each image as a histogram of visual word occurrences

4. Train a classifier (e.g., SVM) on these histogram representations

• Advantages: Simple, rotation and scale-invariant

• Disadvantages: Ignores spatial relationships between features

72 CHAPTER 10. COMPUTER VISION

Feature Extraction

Codebook Formation

Feature Quantization

Histogram Representation

Classification

Image

Category

Figure 10.3: Bag of Visual Words pipeline for object recognition.

10.5.2 Part-Based Models

• Represent objects as collections of parts with spatial relationships

• Deformable Part Models (DPM):

– Object represented by a root filter and a set of part filters
– Parts can move relative to the root with deformation costs
– Detection uses dynamic programming to find optimal part con-

figurations

• Advantages: Capture structural relationships, handle pose variations

• Disadvantages: Complex model, computationally intensive

10.6. DEEP LEARNING APPROACHES 73

10.5.3 Template Matching

• Slide a template over the image and measure similarity

• Similarity measures: Sum of Squared Differences (SSD), Normalized
Cross-Correlation (NCC), etc.

• Advantages: Simple, intuitive

• Disadvantages: Sensitive to scale, rotation, and appearance variations

10.6 Deep Learning Approaches

10.6.1 Convolutional Neural Networks (CNNs)

• Specialized neural networks for processing grid-like data (e.g., images)

• Key components:

– Convolutional layers: Apply filters to learn spatial hierarchies
of features

– Pooling layers: Downsample feature maps to reduce spatial di-
mensions

– Activation functions: Introduce non-linearity (typically ReLU)

– Fully connected layers: Perform final classification based on
extracted features

• Properties:

– Local connectivity: Neurons connect to a local region of the input

– Parameter sharing: Same filter applied throughout the input

– Translation invariance: Detect features regardless of their position

Input Conv1 Pool1 Conv2 Pool2 FC Out

Figure 10.4: Typical architecture of a Convolutional Neural Network (CNN).

74 CHAPTER 10. COMPUTER VISION

10.6.2 Popular CNN Architectures

• AlexNet (2012): First CNN to win ImageNet challenge, 8 layers

• VGG (2014): Deeper networks with small 3×3 filters, 16-19 layers

• GoogLeNet/Inception (2014): Introduced inception modules with
parallel convolutions

• ResNet (2015): Introduced residual connections to enable much deeper
networks (up to 152 layers)

• MobileNet (2017): Lightweight architecture for mobile and embedded
devices

• EfficientNet (2019): Systematically scales depth, width, and resolu-
tion for optimal performance

10.6.3 Tasks in Computer Vision

• Image classification: Assign a label to an entire image

• Object detection: Locate and classify multiple objects in an image

– R-CNN family: Region-based CNNs

– YOLO: You Only Look Once, single-pass detection

– SSD: Single Shot MultiBox Detector

• Semantic segmentation: Classify each pixel in the image

– FCN: Fully Convolutional Networks

– U-Net: Encoder-decoder architecture with skip connections

• Instance segmentation: Detect and segment individual object in-
stances

– Mask R-CNN: Extension of Faster R-CNN with mask prediction

10.7 Vision Transformers

10.7.1 From CNNs to Transformers

• CNNs dominated computer vision for nearly a decade

• Transformer architecture (originally for NLP) adapted for vision in
2020

• Advantages over CNNs:

10.7. VISION TRANSFORMERS 75

Image

Classification Car, 0.95

Detection Car

Segmentation

Figure 10.5: Major computer vision tasks: classification, detection, and seg-
mentation.

– Global receptive field from the start

– Better at capturing long-range dependencies

– More scalable with data and model size

10.7.2 Vision Transformer (ViT) Architecture

• Image tokenization:

– Divide image into fixed-size patches (e.g., 16×16)

– Flatten patches and linearly embed them into tokens

– Add position embeddings to preserve spatial information

– Prepend a special [CLS] token for classification

• Transformer encoder:

– Stack of transformer blocks

– Each block contains multi-head self-attention and MLP layers

– Layer normalization and residual connections around each block

• Classification head:

– MLP applied to the [CLS] token representation

10.7.3 Recent Developments

• Hierarchical Vision Transformers:

– Swin Transformer: Shifted windows for efficient attention

– PVT: Pyramid Vision Transformer with multi-scale feature maps

• Hybrid architectures:

– ConvNeXt: CNN design inspired by transformers

76 CHAPTER 10. COMPUTER VISION

– CoAtNet: Combines convolution and self-attention

• Self-supervised learning:

– DINO: Self-distillation with no labels
– MAE: Masked Autoencoders for visual pre-training

10.8 Evaluation Metrics in Computer Vision

10.8.1 Classification Metrics

• Accuracy: Proportion of correct predictions

• Precision: True positives / (True positives + False positives)

• Recall: True positives / (True positives + False negatives)

• F1 Score: Harmonic mean of precision and recall

• Top-k Accuracy: Correct if true class is among the k highest-probability
predictions

10.8.2 Detection and Segmentation Metrics

• Intersection over Union (IoU): Overlap between predicted and
ground truth regions

• Average Precision (AP): Area under the Precision-Recall curve at
specific IoU thresholds

• Mean Average Precision (mAP): Mean of AP across classes and/or
IoU thresholds

• Pixel Accuracy: Percentage of correctly classified pixels

• Mean IoU: Average IoU across all classes

10.9 Challenges and Future Directions

10.9.1 Current Challenges

• Robustness: Models can be sensitive to adversarial examples, domain
shifts, and unusual scenes

• Explainability: Deep models often function as black boxes, making
it difficult to understand their decisions

• Few-shot learning: Learning from limited examples remains chal-
lenging

10.10. APPLICATIONS OF COMPUTER VISION 77

• Computational efficiency: State-of-the-art models require signifi-
cant computational resources

• 3D understanding: Moving beyond 2D to comprehensive 3D scene
understanding

10.9.2 Future Directions

• Multimodal learning: Integrating vision with language, audio, and
other modalities

• Self-supervised learning: Reducing reliance on labeled data

• Neural architecture search: Automatically discovering optimal model
architectures

• Neuro-symbolic approaches: Combining neural networks with sym-
bolic reasoning

• Edge AI: Deploying computer vision on resource-constrained devices

• Foundation models for vision: Large-scale pre-trained models adapt-
able to many tasks

10.10 Applications of Computer Vision

10.10.1 Healthcare

• Medical image analysis (X-rays, CT scans, MRIs)

• Disease diagnosis and prognosis

• Surgical planning and assistance

• Monitoring patient condition

10.10.2 Autonomous Systems

• Self-driving vehicles

• Robot navigation and manipulation

• Drone surveillance and delivery

• Industrial automation

78 CHAPTER 10. COMPUTER VISION

10.10.3 Security and Surveillance

• Facial recognition

• Anomaly detection

• Object tracking

• Biometric authentication

10.10.4 Augmented and Virtual Reality

• Scene understanding

• Object recognition and tracking

• Hand and body pose estimation

• Spatial mapping

10.10.5 Retail and E-commerce

• Visual search

• Virtual try-on

• Inventory management

• Customer behavior analysis

10.11 Conclusion

Computer vision has evolved dramatically over the past decades, from hand-
crafted features and models to deep learning approaches that learn repre-
sentations directly from data. While significant progress has been made, the
field continues to face challenges in creating systems that truly understand
visual content at a human level. The integration of computer vision with
other AI disciplines, particularly through multimodal learning, represents a
promising direction toward more comprehensive visual intelligence.

As hardware capabilities improve and algorithms become more efficient,
computer vision applications will continue to proliferate across industries,
transforming how we interact with technology and enhancing our ability
to solve complex problems. The future of computer vision lies not just in
improved accuracy on benchmark datasets, but in developing systems that
can reason about the visual world, understand context, and make decisions
that are explainable, fair, and robust.

10.11. CONCLUSION 79

Image

Image Patches

Linear Projection

+ Position Embedding

Transformer Encoder Blocks

MLP Head

Class Prediction

Figure 10.6: Vision Transformer (ViT) architecture.

80 CHAPTER 10. COMPUTER VISION

Chapter 11

Constraint Satisfaction
Problems

11.1 Introduction to CSPs

Constraint Satisfaction Problems (CSPs) represent a class of problems where
the goal is to find a state that satisfies a set of constraints.

11.1.1 Definition

A CSP is formally defined by:

• A set of variables X = {X1, X2, . . . , Xn}

• Domains for each variable D = {D1, D2, . . . , Dn} where Di is the set
of possible values for Xi

• A set of constraints C = {C1, C2, . . . , Cm} that restrict the values
variables can take simultaneously

A solution to a CSP is an assignment of values to all variables such that
all constraints are satisfied.

11.1.2 Examples of CSPs

• Map Coloring: Assign colors to regions such that no adjacent regions
have the same color

• N-Queens: Place N queens on an N×N chessboard such that no queen
threatens another

• Sudoku: Fill a 9×9 grid with digits 1-9 such that each column, row,
and 3×3 box contains all digits

81

82 CHAPTER 11. CONSTRAINT SATISFACTION PROBLEMS

• Scheduling: Assign resources (rooms, teachers) to tasks (classes) sub-
ject to constraints

• Cryptarithmetic: Find digit substitutions that make a mathematical
equation true

WA
SA

NT

Q
NSW

V

T

A

Figure 11.1: Example of a map coloring problem. Adjacent regions must
have different colors.

11.1.3 Types of Constraints

• Unary constraints: Involve a single variable, e.g., X1 ̸= red

• Binary constraints: Involve pairs of variables, e.g., X1 ̸= X2

• Higher-order constraints: Involve three or more variables

• Preference constraints (soft constraints): Express desirability
rather than requirements

11.1.4 Constraint Graphs

For binary CSPs, we can represent the problem structure as a constraint
graph:

• Nodes represent variables

• Edges connect variables that participate in a constraint

The structure of this graph can provide insights into the complexity of
the problem and suggest efficient solution strategies.

11.2 Backtracking Search for CSPs

11.2.1 Basic Backtracking Algorithm

Backtracking search is a depth-first search that assigns values to variables
one at a time, backtracking when a variable has no legal values left to assign.

11.2. BACKTRACKING SEARCH FOR CSPS 83

Algorithm 9 Backtracking Search for CSPs
1: function Backtrack(assignment, csp)
2: if assignment is complete then return assignment
3: end if
4: var ← Select-Unassigned-Variable(csp, assignment)
5: for all value in Order-Domain-Values(csp, var, assignment) do
6: if value is consistent with assignment then
7: add {var = value} to assignment
8: result ← Backtrack(assignment, csp)
9: if result ̸= failure then return result

10: end if
11: remove {var = value} from assignment
12: end if
13: end forreturn failure
14: end function

11.2.2 Improving Backtracking Efficiency

Several heuristics can significantly improve backtracking performance:

Variable Selection Heuristics

• Minimum Remaining Values (MRV): Choose the variable with
the fewest legal values

• Degree Heuristic: Choose the variable involved in the most con-
straints with unassigned variables (as a tie-breaker)

A B C

D E F

|DA| = 2|DB| = 3|DC | = 3

|DD| = 3|DE | = 2|DF | = 3

Figure 11.2: Example constraint graph with domain sizes. MRV would select
variable A or E.

Value Ordering Heuristics

• Least Constraining Value: Choose the value that rules out the
fewest choices for neighboring variables

84 CHAPTER 11. CONSTRAINT SATISFACTION PROBLEMS

11.2.3 Constraint Propagation

Constraint propagation reduces the search space by using constraints to elim-
inate inconsistent values:

Forward Checking

• When a variable is assigned, check immediate constraints and remove
inconsistent values from neighboring unassigned variables

• Terminates search when any variable has no legal values

Initial:

1,2,31,2,31,2,31,2,31,2,3
1,2,31,2,31,2,31,2,31,2,3
1,2,31,2,31,2,31,2,31,2,3
1,2,31,2,31,2,31,2,31,2,3
1,2,31,2,31,2,31,2,31,2,3

After X1,1 = 1:

1 2,3 2,3 2,3 2,3
2,31,2,31,2,31,2,31,2,3
2,31,2,31,2,31,2,31,2,3
2,31,2,31,2,31,2,31,2,3
2,31,2,31,2,31,2,31,2,3

Figure 11.3: Forward checking in a CSP. After assigning 1 to X1,1, the value
1 is removed from the domains of variables in the same row and column.

Arc Consistency (AC-3)

• A constraint is arc consistent if for every value in the domain of one
variable, there exists a consistent value in the domain of the other
variable

• Ensures that every variable has values consistent with each binary
constraint

11.3 Problem Structure and Decomposition

11.3.1 Tree-Structured CSPs

• If the constraint graph forms a tree (no loops), the CSP can be solved
in O(nd2) time

• Algorithm:

1. Choose a variable as root, order variables from root to leaves

2. For j = n down to 2, apply RemoveInconsistent(Parent(Xj), Xj)

3. For j = 1 to n, assign Xj consistent with Parent(Xj)

11.4. LOCAL SEARCH FOR CSPS 85

Algorithm 10 AC-3 Algorithm
1: function AC-3(csp)
2: queue ← all arcs in csp
3: while queue is not empty do
4: (Xi, Xj) ← Remove-First(queue)
5: if Remove-Inconsistent-Values(Xi, Xj) then
6: for each Xk in Neighbors(Xi) - {Xj} do
7: add (Xk, Xi) to queue
8: end for
9: end if

10: end while
11: end function
12: function Remove-Inconsistent-Values(Xi, Xj)
13: removed ← false
14: for each x in Domain[Xi] do
15: if no value y in Domain[Xj] satisfies constraint(Xi=x, Xj=y)

then
16: delete x from Domain[Xi]
17: removed ← true
18: end if
19: end forreturn removed
20: end function

11.3.2 Nearly Tree-Structured CSPs

• Many real-world problems are "almost" trees

• Can be solved efficiently using techniques like:

– Cutset conditioning: Instantiate a subset of variables such that
the remaining constraint graph is a tree

– Tree decomposition: Decompose the constraint graph into in-
terconnected subproblems that form a tree

11.4 Local Search for CSPs

11.4.1 Min-Conflicts Algorithm

• Start with a complete assignment (possibly with conflicts)

• Iteratively select a variable involved in conflicts and reassign it to min-
imize conflicts

86 CHAPTER 11. CONSTRAINT SATISFACTION PROBLEMS

A

B C

D E F G

Figure 11.4: A tree-structured constraint graph. This can be solved effi-
ciently in linear time.

A

B C

D E FE

Figure 11.5: Almost tree-structured constraint graph. Conditioning on vari-
able E (shaded) turns the graph into a tree.

11.4.2 Applications to N-Queens

• For n-queens, min-conflicts can find solutions for extremely large n
(e.g., n = 1,000,000)

• Success due to the fact that the state space has relatively few local
minima

Q

Q
Q

Q

Q

Q

Q
Q

Figure 11.6: Min-conflicts applied to 8-queens. The conflicted queen in
column 2 is moved to minimize conflicts.

11.4.3 Local Search for Optimization Problems

Many CSPs are actually optimization problems:

• Constraint optimization problems: Maximize an objective func-
tion while satisfying hard constraints

11.4. LOCAL SEARCH FOR CSPS 87

Algorithm 11 Min-Conflicts Algorithm
1: function Min-Conflicts(csp, max-steps)
2: current ← initial complete assignment for csp
3: for i = 1 to max-steps do
4: if current is a solution then return current
5: end if
6: var ← a randomly selected conflicted variable in current
7: value ← the value v for var that minimizes conflicts
8: set var = value in current
9: end forreturn failure

10: end function

• Weighted CSPs: Each constraint has a weight; goal is to minimize
the sum of weights of violated constraints

Local search techniques like simulated annealing, genetic algorithms, and
tabu search can be effective for such problems.

State space

Cost

Local min
Global min

Local min

Figure 11.7: Local search in a cost landscape with multiple minima. Red
arrows show hill climbing to a local minimum. Blue arrows show a pathway
to the global minimum.

88 CHAPTER 11. CONSTRAINT SATISFACTION PROBLEMS

Chapter 12

Multimodal Large Language
Models

12.1 Introduction to Multimodal Learning

12.1.1 From Unimodal to Multimodal AI

Traditional AI systems focused on single modalities (text, vision, audio), but
human intelligence integrates multiple sensory inputs and outputs. Multi-
modal AI aims to bridge this gap by processing and generating information
across different modalities.

• Unimodal: Systems that handle a single type of input/output (e.g.,
text-only or image-only)

• Multimodal: Systems that process, reason with, and generate across
multiple modalities (text, images, audio, video)

12.1.2 Challenges in Multimodal Learning

• Representation alignment: Different modalities have different sta-
tistical properties and semantics

• Fusion: How to effectively combine information from different modal-
ities

• Translation: Converting information from one modality to another

• Alignment: Determining which parts of different modalities corre-
spond to each other

• Co-learning: Using knowledge from one modality to improve learning
in another

89

90 CHAPTER 12. MULTIMODAL LARGE LANGUAGE MODELS

12.1.3 Multimodal Applications

• Visual question answering: Answering questions about images

• Image captioning: Generating textual descriptions of images

• Text-to-image generation: Creating images from textual descrip-
tions

• Visual reasoning: Making inferences about visual scenes

• Multimodal chatbots: Conversational agents that can discuss visual
content

• Video understanding: Comprehending actions and events in videos

12.2 Building Blocks of Multimodal Models

12.2.1 CLIP: Contrastive Language-Image Pre-training

CLIP is a neural network trained on a variety of image-text pairs from the
internet, establishing strong visual-semantic connections.

• Architecture: Consists of an image encoder and a text encoder trained
jointly

• Training objective: Contrastive learning to maximize similarity be-
tween matching image-text pairs and minimize for non-matching pairs

• Key innovation: Zero-shot transfer to new visual classification tasks
without specific training

12.2.2 Diffusion Models

Diffusion models are a class of generative models that learn to generate data
by gradually denoising a Gaussian noise pattern.

• Forward process: Gradually add noise to an image until it becomes
pure noise

• Reverse process: Learn to remove noise step by step to generate an
image

• Conditioning: Can be conditioned on text, images, or other modali-
ties

• Applications: Text-to-image generation (DALL·E, Stable Diffusion),
image editing, super-resolution

12.3. EFFICIENT MULTIMODAL MODELS 91

Image Encoder Text Encoder

Image Features Text Features

Cosine Similarity

Image: [photo of a dog] Text: "a photo of a dog"

Maximize similarity for matched pairs, minimize for unmatched

Figure 12.1: Simplified architecture of CLIP, showing contrastive learning
between image and text encoders.

12.2.3 One for All (OFA)

OFA is a unified multimodal model that handles various tasks with a single
sequence-to-sequence architecture.

• Unified architecture: Single model for multiple tasks across modal-
ities

• Task formulation: All tasks formulated as sequence-to-sequence prob-
lems

• Capabilities: Image understanding, text understanding, image gen-
eration, cross-modal tasks

12.3 Efficient Multimodal Models

12.3.1 BLIP-2: Bootstrapping Language-Image Pre-training

BLIP-2 is an efficient approach for multimodal learning that bridges pre-
trained vision and language models through a lightweight Querying Trans-
former.

• Architecture:

92 CHAPTER 12. MULTIMODAL LARGE LANGUAGE MODELS

x0 x1 x2 · · · xT
+noise +noise +noise +noise

denoisedenoisedenoisedenoise

Clean image Pure noise

Diffusion Model: Forward process (adding noise) and
reverse process (denoising)

Figure 12.2: Illustration of the diffusion process, showing forward noising
and reverse denoising steps.

– Frozen image encoder (typically a vision transformer)
– Frozen large language model
– Trainable Q-Former (Querying Transformer) that connects them

• Advantages:

– Parameter-efficient: Only trains the connecting module
– Leverages strong pre-trained models without modifying them
– Reduces computational costs significantly

12.3.2 Training Objectives in BLIP-2

• Image-Text Contrastive Learning: Align image and text represen-
tations

• Image-Grounded Text Generation: Generate captions conditioned
on images

• Image-Text Matching: Predict whether image-text pairs match

12.3.3 Efficiency Comparisons

12.4 MLLM Architectures

12.4.1 Architectural Paradigms

There are several approaches to building Multimodal Large Language Models
(MLLMs):

12.4. MLLM ARCHITECTURES 93

Unified Encoder

Unified Decoder

Image captioning: Image → Text
VQA: Image+Text → Text

Text-to-Image: Text → Image

Translation: Text → Text

Universal sequence-to-sequence framework for multimodal tasks

Figure 12.3: OFA’s unified sequence-to-sequence architecture for multimodal
tasks.

Model Trainable Parameters COCO Caption VQA
Full fine-tuning 1-7B High High
BLIP-2 100-200M High High
Adapter-based 10-50M Medium Medium

Table 12.1: Comparison of different multimodal training strategies by effi-
ciency and performance.

• End-to-end integration: Train a single model on multimodal data
from scratch

• Modular composition: Combine specialized models for different
modalities

• Projection-based: Project non-text modalities into the language
model’s embedding space

12.4.2 LLM as Discrete Controller

One effective approach uses LLMs as controllers or orchestrators:

• LLM-as-a-controller: LLM decides which specialized models to call
and when

• Tool use: Visual modules are accessed as tools by the LLM

• Benefits: Modularity, reusability, easier debugging

94 CHAPTER 12. MULTIMODAL LARGE LANGUAGE MODELS

Frozen Vision Encoder (ViT)

Q-Former (Trainable)

Frozen LLM

Image

Text Generation

Learnable query tokens

Figure 12.4: BLIP-2 architecture with frozen image encoder, trainable Q-
Former, and frozen language model.

12.4.3 LLM as Joint Part of System

Alternative approach where the LLM is more deeply integrated with other
modalities:

• Projectors: Map other modalities into LLM’s token space

• LLM as backbone: Other modalities feed into the LLM’s layers

• Cross-attention: Allow interaction between modalities at different
levels

12.5 Image Tokenization and Processing

12.5.1 Methods for Image Tokenization

In order for LLMs to process images, they must be converted into a format
compatible with text tokens:

• Grid-based: Divide image into grid cells and encode each cell

• Patch-based: Split image into patches and encode each patch (used
in vision transformers)

• Object-based: Detect objects and tokenize their features

• Visual vocabulary: Learn a discrete codebook of visual tokens

12.5. IMAGE TOKENIZATION AND PROCESSING 95

Large Language Model

Vision Model Audio Model OCR Model

LLM as a controller for specialized modules

Figure 12.5: LLM as a discrete controller architecture, coordinating special-
ized perceptual models.

12.5.2 Challenges in Image Tokenization

• Sequence length: Images can generate thousands of tokens, chal-
lenging LLM context windows

• Information density: Visual and linguistic information have differ-
ent densities

• Spatial relationships: Preserving spatial information in sequence
format

• Interleaving: How to effectively interleave image and text tokens

12.5.3 Tokenization in Leading MLLMs

Model Method Approach
GPT-4V Projection Proprietary visual encoding pro-

jected to language space
LLaVA CLIP+Projection CLIP embeddings projected to lan-

guage model embeddings
Flamingo Perceiver Cross-attention between visual fea-

tures and language model
ImageBind Joint embedding Map multiple modalities to a shared

embedding space

Table 12.2: Image tokenization approaches in different multimodal language
models.

96 CHAPTER 12. MULTIMODAL LARGE LANGUAGE MODELS

Image Encoder Text Encoder

Image Projector

Large Language Model

Figure 12.6: Joint architecture where visual features are projected into the
language model’s space.

12.6 Multimodal Instruction Tuning

12.6.1 From Pre-training to Instruction Tuning

• Pre-training: General capability acquisition on large-scale data

• Instruction tuning: Aligning the model to follow human instructions

• Multimodal instruction tuning: Teaching models to follow instruc-
tions involving multiple modalities

12.6.2 Creating Multimodal Instruction Datasets

• Human annotation: Experts create instruction-response pairs with
images

• Synthetic data generation: Using existing models to generate instruction-
response pairs

• Data augmentation: Variations of instructions for the same image

• Multi-turn conversations: Instruction datasets with follow-up ques-
tions

12.6.3 LLaVA: Large Language and Vision Assistant

LLaVA is a representative example of instruction-tuned multimodal models:

• Architecture: CLIP visual encoder + projection layer + instruction-
tuned LLM

12.7. FUTURE DIRECTIONS AND CHALLENGES 97

• Training process:

1. Pre-train on image-text pairs to learn visual-language connection
2. Instruction-tune on multimodal instruction-response pairs
3. Optionally, human preference alignment with RLHF

• Capabilities: Visual understanding, reasoning, conversation about
images

Pre-training on image-text pairs

Instruction tuning

RLHF (optional)

Image-text pairs

Instructions with images

Human preferences

Figure 12.7: LLaVA training process, showing progression from pre-training
to instruction tuning.

12.7 Future Directions and Challenges

12.7.1 Expanding Modalities

• Audio integration: Speech, sounds, music understanding

• Video understanding: Dynamic visual content over time

• 3D and physical world: Understanding spatial relationships and
physics

• Tactile and other sensory: Incorporating touch, smell, taste repre-
sentations

12.7.2 Key Challenges

• Hallucinations: MLLMs can generate plausible but false information
about visual content

98 CHAPTER 12. MULTIMODAL LARGE LANGUAGE MODELS

• Grounding: Ensuring models’ responses are actually grounded in vi-
sual inputs

• Evaluation: Developing robust benchmarks for multimodal capabili-
ties

• Cross-modal reasoning: Integrating information across modalities
for complex reasoning

• Efficiency: Making multimodal models computationally efficient

• Bias and fairness: Addressing biases in multimodal systems

12.7.3 Applications and Impact

• Accessibility: Making digital content accessible to diverse users

• Education: Multimodal learning aids and tutoring systems

• Creative tools: Assisting in content creation across modalities

• Healthcare: Medical image analysis with explanations

• Robotics: Grounding language instructions in physical world

Multimodal LLMs

Accessibility Robotics Healthcare

Education Creative tools AI Assistants

Figure 12.8: Potential application areas of multimodal large language mod-
els.

Bibliography

[1] Russell, S., & Norvig, P. (2010). Artificial Intelligence: A Modern Ap-
proach (3rd ed.). Prentice Hall.

[2] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT
Press.

[3] Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An
Introduction (2nd ed.). MIT Press.

[4] Jurafsky, D., & Martin, J. H. (2023). Speech and Language Pro-
cessing (3rd ed. draft). Retrieved from https://web.stanford.edu/
~jurafsky/slp3/

[5] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In
Advances in Neural Information Processing Systems (pp. 5998-6008).

[6] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal,
S., ... & Sutskever, I. (2021). Learning transferable visual models from
natural language supervision. In International Conference on Machine
Learning (pp. 8748-8763).

[7] Li, J., Li, D., Savarese, S., & Hoi, S. (2023). BLIP-2: Bootstrapping
language-image pre-training with frozen image encoders and large lan-
guage models. In International Conference on Machine Learning.

[8] Liu, P., Yuan, W., Fu, J., et al. (2022). OFA: Unifying architectures,
tasks, and modalities through a simple sequence-to-sequence learning
framework. In International Conference on Machine Learning.

[9] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal,
P., ... & Amodei, D. (2020). Language models are few-shot learners. In
Advances in Neural Information Processing Systems.

[10] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-
training of deep bidirectional transformers for language understanding.
In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics.

99

https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/

100 BIBLIOGRAPHY

[11] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X.,
Unterthiner, T., ... & Houlsby, N. (2020). An image is worth 16x16
words: Transformers for image recognition at scale. In International
Conference on Learning Representations.

[12] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M.,
... & Liu, P. J. (2020). Exploring the limits of transfer learning with a
unified text-to-text transformer. Journal of Machine Learning Research,
21(140), 1-67.

[13] Liu, H., Li, C., Wu, Q., & Lee, Y. J. (2023). Visual instruction tuning.
In Advances in Neural Information Processing Systems.

[14] Deng, C., Liu, X., et al. (2024). A Survey on Multimodal Large Lan-
guage Models. arXiv preprint arXiv:2306.13549.

	Introduction to Artificial Intelligence
	Historical Overview
	Early Successes
	Expert Systems Era (1970s-1980s)
	Neural Networks Development
	Deep Learning Revolution

	AI Agent Architecture
	Definition of Intelligent Agents
	PEAS Framework
	Environment Types
	Agent Types

	Environment Representations

	Problem Solving and Search
	Problem Formulation
	Uninformed Search Strategies
	Breadth-First Search (BFS)
	Uniform-Cost Search
	Depth-First Search (DFS)
	Iterative Deepening Search (IDS)
	Bidirectional Search

	Informed Search Strategies
	Best-First Search
	Greedy Search
	A* Search
	Consistency in Heuristics
	Memory-Bounded Search Algorithms
	Heuristic Functions

	Local Search Algorithms
	Hill Climbing
	Simulated Annealing
	Local Beam Search
	Genetic Algorithms

	Online Search
	Online Search Characteristics
	Online Search Algorithms

	Adversarial Search
	Game Theory Basics
	Game Types
	Game Representation

	Minimax Algorithm
	Minimax Properties

	Alpha-Beta Pruning
	Alpha-Beta Properties

	Resource Limits and Evaluation Functions
	Evaluation Functions
	Cutoff Test
	Horizon Effect

	Games with Chance
	Expectiminimax
	Expectiminimax Properties

	Partially Observable Games
	Information Sets
	Strategies for Partially Observable Games

	Knowledge Representation: Propositional Logic
	Knowledge-Based Agents
	Architecture

	Propositional Logic
	Syntax
	Semantics
	Entailment

	Inference Algorithms
	Inference by Enumeration
	Forward Chaining
	Backward Chaining
	Resolution

	First-Order Logic
	Limitations of Propositional Logic
	First-Order Logic Syntax
	Basic Elements
	Terms and Sentences

	First-Order Logic Semantics
	Models
	Quantifiers

	Inference in First-Order Logic
	Universal Instantiation (UI)
	Existential Instantiation (EI)
	Unification
	Generalized Modus Ponens (GMP)
	Forward Chaining for FOL
	Backward Chaining for FOL
	Resolution for FOL

	Uncertainty and Probabilistic Reasoning
	Motivation
	Probability Theory Basics
	Probability Model
	Axioms of Probability
	Conditional Probability

	Inference Using Full Joint Distributions
	Independence
	Conditional Independence
	Bayes' Rule
	Naive Bayes Models
	Bayesian Networks
	Structure
	Example Bayesian Network
	Advantages of Bayesian Networks

	Inference in Bayesian Networks
	Exact Inference
	Approximate Inference

	Machine Learning
	Introduction to Machine Learning
	When to Use Machine Learning
	Components of Learning

	Learning Paradigms
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Hypothesis Space and Learning Algorithms
	Hypothesis Space
	Empirical Risk Minimization

	Model Complexity and Generalization
	Overfitting and Underfitting
	VC Dimension
	Confidence Intervals and Generalization
	Structural Risk Minimization

	Machine Learning in Practice
	Dataset Splitting
	Model Selection
	Data Preprocessing

	Neural Networks and Deep Learning
	Artificial Neuron
	Feedforward Neural Networks
	Backpropagation Algorithm
	Deep Learning
	Convolutional Neural Networks (CNNs)
	Transformers

	Reinforcement Learning
	Introduction to Reinforcement Learning
	Markov Decision Processes (MDPs)
	MDP Formulation
	The Goal in MDPs

	Value Functions
	State-Value Function
	Action-Value Function (Q-Function)
	Bellman Equations
	Optimal Value Functions
	Optimal Policy

	Dynamic Programming Methods
	Policy Evaluation
	Policy Improvement
	Policy Iteration
	Value Iteration

	Model-Free Learning
	Monte Carlo Learning
	Temporal Difference Learning

	Q-Learning
	Q-Learning Algorithm
	Exploration vs. Exploitation

	Function Approximation
	Linear Function Approximation
	Deep Q-Networks (DQN)

	Policy Gradient Methods
	Policy Parameterization
	Policy Gradient Theorem
	REINFORCE Algorithm

	Advanced Topics
	Deep Reinforcement Learning
	Multi-Agent Reinforcement Learning
	Hierarchical Reinforcement Learning

	Natural Language Processing
	Introduction to NLP
	Applications of NLP

	Language Models
	N-gram Models
	Smoothing
	Evaluation: Perplexity

	Text Classification
	Naive Bayes Classifier
	Bag-of-Words Model

	Word Embeddings
	Distributional Semantics
	Word2Vec
	GloVe (Global Vectors)

	Parts of Speech and Syntax
	Parts of Speech (POS)
	POS Tagging
	Syntactic Parsing

	Modern NLP with Deep Learning
	Subword Models
	Transformer Architecture
	Pre-trained Language Models

	Evaluating NLP Systems
	Intrinsic Evaluation
	Extrinsic Evaluation

	Computer Vision
	Introduction to Computer Vision
	Why Computer Vision is Useful

	Challenges in Computer Vision
	Variability in Appearance
	Semantic Gap
	Computational Challenges

	Image Formation and Representation
	Image Formation Process
	Digital Image Representation

	Traditional Computer Vision Approaches
	Filtering and Convolution
	Edge Detection
	Feature Extraction

	Traditional Object Recognition Paradigms
	Bag of Visual Words
	Part-Based Models
	Template Matching

	Deep Learning Approaches
	Convolutional Neural Networks (CNNs)
	Popular CNN Architectures
	Tasks in Computer Vision

	Vision Transformers
	From CNNs to Transformers
	Vision Transformer (ViT) Architecture
	Recent Developments

	Evaluation Metrics in Computer Vision
	Classification Metrics
	Detection and Segmentation Metrics

	Challenges and Future Directions
	Current Challenges
	Future Directions

	Applications of Computer Vision
	Healthcare
	Autonomous Systems
	Security and Surveillance
	Augmented and Virtual Reality
	Retail and E-commerce

	Conclusion

	Constraint Satisfaction Problems
	Introduction to CSPs
	Definition
	Examples of CSPs
	Types of Constraints
	Constraint Graphs

	Backtracking Search for CSPs
	Basic Backtracking Algorithm
	Improving Backtracking Efficiency
	Constraint Propagation

	Problem Structure and Decomposition
	Tree-Structured CSPs
	Nearly Tree-Structured CSPs

	Local Search for CSPs
	Min-Conflicts Algorithm
	Applications to N-Queens
	Local Search for Optimization Problems

	Multimodal Large Language Models
	Introduction to Multimodal Learning
	From Unimodal to Multimodal AI
	Challenges in Multimodal Learning
	Multimodal Applications

	Building Blocks of Multimodal Models
	CLIP: Contrastive Language-Image Pre-training
	Diffusion Models
	One for All (OFA)

	Efficient Multimodal Models
	BLIP-2: Bootstrapping Language-Image Pre-training
	Training Objectives in BLIP-2
	Efficiency Comparisons

	MLLM Architectures
	Architectural Paradigms
	LLM as Discrete Controller
	LLM as Joint Part of System

	Image Tokenization and Processing
	Methods for Image Tokenization
	Challenges in Image Tokenization
	Tokenization in Leading MLLMs

	Multimodal Instruction Tuning
	From Pre-training to Instruction Tuning
	Creating Multimodal Instruction Datasets
	LLaVA: Large Language and Vision Assistant

	Future Directions and Challenges
	Expanding Modalities
	Key Challenges
	Applications and Impact

